Literaturverzeichnis

“Machste dreckig – Machste sauber: Die Klimalösung”

Sollte Ihnen ein inhaltlicher Fehler auffallen, so zögern Sie bitte nicht uns zu kontaktieren: info@klimawandel-buch.de

  1. Komarnicki, P., Kranhold, M. & Styczynski, Z. A. Einführung – klimapolitische Ziele der nachhaltigen Energieversorgung. in (2021). doi:10.1007/978-3-658-33559-5_1.
  2. Deckert, R. & Saß, A. Auf dem Weg zur Energiewirtschaft 4.0. in Digitalisierung und Energiewirtschaft: Technologischer Wandel und wirtschaftliche Auswirkungen (eds. Deckert, R. & Saß, A.) 11–36 (Springer Fachmedien Wiesbaden, 2020). doi:10.1007/978-3-658-27791-8_3.
  3. Benker, F. Internationale Wirtschaftspolitik und Klimawandel. in Megatrends aus Sicht der Volkswirtschaftslehre: Demografischer Wandel – Globalisierung & Umwelt – Digitalisierung (eds. Rebeggiani, L., Wilke, C. B. & Wohlmann, M.) 127–148 (Springer Fachmedien Wiesbaden, 2020). doi:10.1007/978-3-658-30129-3_7.
  4. Grotzinger, J. & Jordan, T. Mensch und Umwelt. in Press/Siever Allgemeine Geologie (eds. Grotzinger, J. & Jordan, T.) 643–678 (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48342-8_23.
  5. Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change 11, 207–212 (2021).
  6. Ribes, A., Zwiers, F. W., Azaïs, J.-M. & Naveau, P. A new statistical approach to climate change detection and attribution. Climate Dynamics 48, 367–386 (2017).
  7. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  8. Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nature Geoscience 5, 31–36 (2012).
  9. van Wesemael, D. et al. Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science 102, 1780–1787 (2019).
  10. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021)
  2. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. https://www.ncdc.noaa.gov/cag/ (2021).
  3. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  4. Brunetti, M. & Prodi, F. The climate system. EPJ Web Conf. 98, (2015).
  5. Rahmstorf, S. & Schellnhuber, H. J. Der Klimawandel. (C.H.Beck, 2006).
  6. KONDRATYEV, K. J. & MOSKALENKO, N. I. The role of carbon dioxid and other minor gaseous components and aerosols in the radiation budget. in The Global Climate (ed. Houghton, J. T.) 225–233 (Cambridge University Press, 1984).
  7. Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).
  8. Beauchemin, K. & M McGinn, S. Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil1. Journal of animal science 84, (2006).
  9. Philipona, R., Dürr, B., Ohmura, A. & Ruckstuhl, C. Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophysical Research Letters 32, (2005).
  10. Stephens, G. L. et al. The Global Character of the Flux of Downward Longwave Radiation. Clim. 25, 2329–2340 (2011).
    1. https://journals.ametsoc.org/view/journals/clim/25/7/jcli-d-11-00262.1.xml
  11. Kaicun, W. & Shunlin, L. Global atmospheric downward longwave radiation over land surface under all‐sky conditions from 1973 to 2008. Geophys. Res. Atmos. 114, (2009). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD011800
  12. Harries, J. E., Brindley, H. E., Sagoo, P. J. & Bantges, R. J. erratum: Increase in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature 410, 1124 (2001). http://www.grandkidzfuture.com/the-climate-problem/ewExternalFiles/Harries%202001%20GHG%20forcing%20change.pdf
  13. Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change 11, 207–212 (2021).
  14. Ribes, A., Zwiers, F. W., Azaïs, J.-M. & Naveau, P. A new statistical approach to climate change detection and attribution. Climate Dynamics 48, 367–386 (2017).
  15. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  16. Wigley, T. M. L. & Santer, B. D. A probabilistic quantification of the anthropogenic component of twentieth century global warming. Climate Dynamics 40, 1087–1102 (2013).
  17. Gillett, N. P., Arora, V. K., Flato, G. M., Scinocca, J. F. & von Salzen, K. Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophysical Research Letters 39, (2012).
  18. Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nature Geoscience 5, 31–36 (2012).
  19. Stone, DáithíA., Allen, M. R., Selten, F., Kliphuis, M. & Stott, P. A. The Detection and Attribution of Climate Change Using an Ensemble of Opportunity. Journal of Climate 20, 504–516 (2007).
  20. Meehl, G. A. et al. Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate. Journal of Climate 17, (2004)
  1. Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proceedings of the National Academy of Sciences 109, (2012).
  2. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015)
  3. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
  4. WGMS (2017): Fluctuations of Glaciers Database. World Glacier Monitoring Service, Zurich, Switzerland. DOI:10.5904/wgms-fog-2017-10. Online access: http://dx.doi.org/10.5904/wgms-fog-2017-10
  5. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
  1. Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nature Climate Change 7, 774–782 (2017).
  2. World Bank. Gross domestic product 2020. https://databank.worldbank.org/data/download/GDP.pdf (2021).
  3. Urban, M. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
  4. Hales, S., Kovats, S., Campbell-Lendrum, D. & Lloyd, S. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. (2014).
  5. Climate vulnerability monitor 2: A guide to the cold calculus of a hot planet. https://daraint.org/wp-content/uploads/2012/09/CVM2ndEd-FrontMatter.pdf (2012).
  6. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).
  7. Robine, J.-M., Cheung, K., Roy, S., Oyen, H. & Herrmann, F. Report on excess mortality in Europe during summer 2003. EU Community Action Programme for Public Health, Grant Agreement (2007).
  8. Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. The Lancet 397, (2021).
  9. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases 13, e0007213- (2019).
  10. Richardson, K. & Bradshaw, C. Assessment of the impacts of climate change on national level food insecurity using the Hunger and Climate Vulnerability Index. https://www.helixclimate.eu/wp-content/uploads/2018/04/HELIX-603864-D5.7-Hunger-and-Climate-Vulneraibility-Index.pdf (2017).
  11. Mora, C. et al. Global risk of deadly heat. Nature Climate Change 7, 501–506 (2017).
  12. Selby, J. & Hoffmann, C. Rethinking Climate Change, Conflict and Security. Geopolitics 19, 747–756 (2014).
  13. Koubi, V. Climate Change and Conflict. Annual Review of Political Science 22, 343–360 (2019).
  14. Report on Effects of a Changing Climate to the Department of Defense. https://media.defense.gov/2019/Jan/29/2002084200/-1/-1/1/CLIMATE-CHANGE-REPORT-2019.PDF (2019).
  15. 2014 Climate Change Adaptation Roadmap. https://www.acq.osd.mil/eie/Downloads/CCARprint_wForward_e.pdf (2014).
  16. Morales, E. Global Climate Change as a Threat to U.S. National Security. Journal of Strategic Security 8, 134–148 (2015).
  17. Huang, B., M. J. Menne, T. Boyer, E. Freeman, B. E. Gleason, J. H. Lawrimore, C. Liu, J. J. Rennie, C. Schreck, F. Sun, R. Vose, C. N. Williams, X. Yin, H.-M. Zhang, 2020: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. , Climate, 33, 1351-1379, DOI: 10.1175/JCLI-D-19-0395.1
  18. Kapsenberg, L. & Cyronak, T. Ocean acidification refugia in variable environments. Global Change Biology 25, (2019).
  1. World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (2021).
  2. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  3. Höök, M. & Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52, 797–809 (2013).
  4. Yadvinder, M. et al. Climate Change, Deforestation, and the Fate of the Amazon. Science 319, 169–172 (2008).
  5. Tongwane, M. I. & Moeletsi, M. E. Emission factors and carbon emissions of methane from enteric fermentation of cattle produced under different management systems in South Africa. Journal of Cleaner Production 265, 121931 (2020).
  6. Chen, H. et al. Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting. Bioresource Technology 266, 82–88 (2018).
  7. Zhu, E. et al. Identify the optimization strategy of nitrogen fertilization level based on trade-off analysis between rice production and greenhouse gas emission. Journal of Cleaner Production 239, 118060 (2019).
  8. Simmonds, P. G. et al. Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements. Atmospheric Chemistry and Physics 17, (2017).
  9. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021).
  1. United Nations. Paris Agreement. (2015).
  2. Banet, C. The Paris Agreement to the UNFCCC: Underlying Dynamics and Expected Consequences for the Energy Sector. in 71–91 (2017).
  3. Kern, F. & Rogge, K. S. The pace of governed energy transitions: Agency, international dynamics and the global Paris agreement accelerating decarbonisation processes? Energy Research & Social Science 22, 13–17 (2016).
  4. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  5. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  6. Liu, W. et al. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth System Dynamics 9, (2018).
  7. Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. A scientific critique of the two-degree climate change target. Nature Geoscience 9, (2015).
  8. Kharin, V. v. et al. Risks from Climate Extremes Change Differently from 1.5°C to 2.0°C Depending on Rarity. Earth’s Future 6, (2018).
  9. Liu, W. et al. Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2 °C Stabilization Scenarios. Geophysical Research Letters 45, (2018).
  10. Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nature Climate Change 7, 417–422 (2017).
  11. Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nature Communications 9, (2018).
  12. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Climate Change 3, 165–170 (2013).
  1. Kondo, M. et al. State of the science in reconciling top‐down and bottom‐up approaches for terrestrial CO 2 Global Change Biology 26, (2020).
  2. Lahn, B. Changing climate change: The carbon budget and the modifying-work of the IPCC. Social Studies of Science 51, (2021).
  3. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  4. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
  5. Robiou du Pont, Y. & Meinshausen, M. Warming assessment of the bottom-up Paris Agreement emissions pledges. Nature Communications 9, 4810 (2018).
  6. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  7. Honegger, M. & Reiner, D. The political economy of negative emissions technologies: consequences for international policy design. Climate Policy 18, 306–321 (2018).
  8. van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change 8, 391–397 (2018).
  9. Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters 13, (2018).
  10. Hilaire, J. et al. Negative emissions and international climate goals—learning from and about mitigation scenarios. Climatic Change 157, 189–219 (2019).
  11. van Wesemael, D. et al. Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science 102, 1780–1787 (2019).
  12. Statista Research Department. CO2-Emissionen weltweit in den Jahren 1960 bis 2020. 2021 https://de.statista.com/statistik/daten/studie/37187/umfrage/der-weltweite-co2-ausstoss-seit-1751/.
  1. World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (2021).
  2. World Bank. Population, total. https://data.worldbank.org/indicator/SP.POP.TOTL (2020).
  3. Kohler, M. CO2 emissions, energy consumption, income and foreign trade: A South African perspective. Energy Policy 63, 1042–1050 (2013).
  4. Moheeldeen, A. & Abugamos, H. Income-carbon Emissions Nexus for Middle East and North Africa Countries: A Semi-parametric Approach. International Journal of Energy Economics and Policy 7, 152–159 (2017).
  5. Andrew, R. M., 2019. Global CO2 emissions from cement production, 1928-2018. Earth System Science Data, 11(4), 1675-1710, DOI: 10.5194/essd-11-1675-2019. Available at: https://www.earth-syst-sci-data.net/11/1675/2019/
    Andrew, R. M., 2020a. Timely estimates of India’s annual and monthly fossil CO2 emissions, Earth System Science Data, 12 (4), 2411–2421, DOI: 10.5194/essd-12-2411-2020. Available at: https://essd.copernicus.org/articles/12/2411/2020/
    Andrew, R. M., 2020b. A comparison of estimates of global carbon dioxide emissions from fossil carbon sources, Earth System Science Data, 12, 1437–1465, DOI: 10.5194/essd-12-1437-2020. Available at: https://essd.copernicus.org/articles/12/1437/2020/essd-12-1437-2020-assets.html
    Gilfillan, D., Marland, G., Boden, T., and R. Andres, 2019. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center at Appalachian State University, Boone North Carolina. Available at: https://energy.appstate.edu/research/work-areas/cdiac-appstate, last access: 27 September 2019.
    UNFCCC, 2020. National Inventory Submissions 2020. United Nations Framework Convention on Climate Change. Available at: https://unfccc.int/ghg-inventories-annex-i-parties/2020, last access June 2020.
    BP, 2020. Statistical Review of World Energy. Available at: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html, last access June 2020.
  6. Climate Watch. Global Historical Emissions. https://www.climatewatchdata.org/ghg-emissions?breakBy=gas&end_year=2018&regions=DEU%2CGBR%2CFRA&source=GCP&start_year=1990 (2020).
  7. Lutz, W. How population growth relates to climate change. Proceedings of the National Academy of Sciences 114, (2017).
  8. Riti, J. S., Song, D., Shu, Y. & Kamah, M. Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? Journal of Cleaner Production 166, 1448–1461 (2017).
  9. Wang, Q., Jiang, R. & Zhan, L. Is decoupling economic growth from fuel consumption possible in developing countries? – A comparison of China and India. Journal of Cleaner Production 229, 806–817 (2019).
  10. Zuo, J., Zhang, L. & Chen, M. A new model for international cooperation on climate change: exploring Trilateral Cooperation. Climate Change Research (2021).
  11. Arab Asadi, S. Climate Change Concern and inevitable international cooperation. Public Law Studies Quarterly 50, 987–1005 (2020).
  12. Rimmer, M. The Paris Agreement: Intellectual Property, Technology Transfer, and Climate Change. in Intellectual Property and Clean Energy (Springer Singapore, 2018). doi:10.1007/978-981-13-2155-9_2.
  13. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  14. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  15. Andrew, R. Figures from the Global Carbon Budget 2020Andr. CICERO Center for International Climate Research https://folk.universitetetioslo.no/roberan/GCB2020.shtml (2019).
  16. Global Carbon Project. Supplemental data of Global Carbon Budget 2020. https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020 (2020) doi:10.18160/gcp-2020.
  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  2. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. https://www.ncdc.noaa.gov/cag/ (2021).
  3. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases 13, e0007213- (2019).
  4. Richardson, K. & Bradshaw, C. Assessment of the impacts of climate change on national level food insecurity using the Hunger and Climate Vulnerability Index. https://www.helixclimate.eu/wp-content/uploads/2018/04/HELIX-603864-D5.7-Hunger-and-Climate-Vulneraibility-Index.pdf (2017).
  5. Mora, C. et al. Global risk of deadly heat. Nature Climate Change 7, 501–506 (2017).
  6. Selby, J. & Hoffmann, C. Rethinking Climate Change, Conflict and Security. Geopolitics 19, 747–756 (2014).
  7. Koubi, V. Climate Change and Conflict. Annual Review of Political Science 22, 343–360 (2019).
  8. Report on Effects of a Changing Climate to the Department of Defense. https://media.defense.gov/2019/Jan/29/2002084200/-1/-1/1/CLIMATE-CHANGE-REPORT-2019.PDF (2019).
  9. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (2021).
  10. December 2020 Climate Action Tracker Paris Agreement turning point. https://climateactiontracker.org/documents/829/CAT_2020-12-01_Briefing_GlobalUpdate_Paris5Years_Dec2020.pdf (2020).
  11. Peters, G. P. et al. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change 10, 3–6 (2020).
  12. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  13. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021)
  1. bp. bp Statistical Review of World Energy 2020. www.bp.com/statisticalreview.
  2. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021).
  3. Fraunhofer IEE. Energiewende Barometer. (2019).
  4. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-37380-0.
  5. Deutschland Weltenergierat. Global Energy Transitions A comparative analysis of key countries and implications for the international energy debate In cooperation with. www.druckcenter.de.
  6. Dictionary of Energy. (Elsevier, 2015). doi:10.1016/C2009-0-64490-1.
  7. Quaschning, V. Regenerative Energiesysteme. (2021).
  1. Geller, W. Thermodynamik für Maschinenbauer. (Springer Berlin Heidelberg, 2015). doi:10.1007/978-3-662-44961-5.
  2. Wagner, A. Photovoltaik Engineering. (Springer Berlin Heidelberg, 2015). doi:10.1007/978-3-662-48640-5.
  3. Heinze, H.-E. & Tschöke, H. Definition und Einteilung der Hubkolbenmotoren. in Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven (eds. van Basshuysen, R. & Schäfer, F.) 9–16 (Springer Fachmedien Wiesbaden, 2017). doi:10.1007/978-3-658-10902-8_2.
  4. Energietechnik. (Springer Fachmedien Wiesbaden, 2015). doi:10.1007/978-3-658-07454-8.
  5. Cleveland, C. J. & Morris, C. Dictionary of Energy. (Elsevier, 2015). doi:10.1016/C2009-0-64490-1.
  6. Konstantin, P. Praxisbuch Energiewirtschaft. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-49823-1.
  7. Goethe-Gymnasium Regensburg. Das System Bahn: Der ICE Eine Publikation des Goethe-Gymnasiums Regensburg in Zusammenarbeit mit der Deutschen Bahn AG. https://www.db-systemtechnik.de/resource/blob/1665152/b1e975afc4621103696b63e8247d37ce/Aktuell_D_Schulbroschuere-Regensburg_Das-System-Bahn-der-ICE-data.pdf (2013).
  8. Kerntechnik Deutschland e.V. Zahlen, Kernkraftwerke in Betrieb. https://www.kernd.de/kernd/themen/strom/Zahlen-und-Fakten/01_index.php#anchor_f93853ce_Accordion-Kernkraftwerke-in-Betrieb (2020).
  9. United Nations. Energy Statistics Pocketbook 2021. https://unstats.un.org/unsd/energystats/pubs/documents/2021pb-web.pdf (2021).
  1. Fischer, T., Ganal, H. & Hoffmann, C. Barometer Energiewende 2019. https://www.barometer-energiewende.de/content/dam/iee/barometer-energiewende/documents/Barometer/2019_Barometer_online_d.pdf (2019).
  2. bp. Full report – Statistical Review of World Energy 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (2021).
  3. bp. Updated methodology for converting non-fossil electricity generation to primary energy.
  4. Smil, V. Energy Transitions: Global and National Perspectives (Second expanded and updated edition). (2016).
  5. Schlömer, S. et al. Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf (2014).
  6. Liu, F. & van den Bergh, J. C. J. M. Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA. Energy Policy 138, (2020).
  1. Kunz, C. Energiespeicher: Technologien und ihre Bedeutung für die Energiewende. Renews Spezial vol. 88 (2019).
  2. Fischer, T. et al. Energiewende Barometer. (2019).
  3. Göke, L., Kemfert, C., Kendziorski, M. & von Hirschausen, C. 100 Prozent erneuerbare Energien für Deutschland: Koordinierte Ausbauplanung notwendig. DIW Wochenbericht (2021).
  4. Kendziorski, M., Göke, L., Kemfert, C., von Hirschausen, C. & Zozmann, E. 100% erneuerbare Energie für Deutschland unter besonderer Berücksichtigung von Dezentralität und räumlicher Verbrauchsnähe – Potenziale, Szenarien und Auswirkungen auf Netzinfrastrukturen. (2021).
  5. Rohrig, K. et al. Energiewirtschaftliche Bedeutung der Offshore-Windenergie für die Energiewende. (2013).
  6. Energiespeicher – Bedarf, Technologien, Integration. vol. 2 (Springer Berlin Heidelberg, 2017).
  7. Bellarmine, G. T. Load management techniques. in Proceedings of the IEEE SoutheastCon 2000. “Preparing for The New Millennium” (Cat. No.00CH37105) 139–145 (2000). doi:10.1109/SECON.2000.845449.
  8. Wirth, H. Aktuelle Fakten zur Photovoltaik in Deutschland. (2021).
  9. Ritchie, H. & Roser, M. Electricity Mix. https://ourworldindata.org/electricity-mix (2021).
  1. Buchholz, B. M. & Styczynski, Z. A. Smart Grids. (Springer Berlin Heidelberg, 2020). doi:10.1007/978-3-662-60930-9.
  2. Bundesministerium für Wirtschaft und Energie. Intelligente Netze . https://www.bmwi.de/Redaktion/DE/Artikel/Energie/intelligente-netze.html (2021).
  3. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-37380-0.
  4. Gruber, A., Biedermann, F., von Roon, S. & Carr, L. Regionales Lastmanagement – Potenziale Stromintensiver Prozesse. in 13. Symposium Energieinnovation (2014).
  5. Tao, L. & Gao, Y. Real-time pricing for smart grid with distributed energy and storage: A noncooperative game method considering spatially and temporally coupled constraints. International Journal of Electrical Power & Energy Systems 115, 105487 (2020).
  6. Kabalci, E. & Kabalci, Y. From Smart Grid to Internet of Energy. (Elsevier, 2020). doi:10.1016/C2018-0-01637-0.

WICHTIG: Anmerkung der Autoren zu den dargestellten Gestehungskosten der Kernenergie (Abbildung auf der rechten Seite)

Die Gestehungskosten der Kernenergie sind stark von projektspezifischen Faktoren wie Bauzeit und Kapitalkosten abhängig. Vergangene Projekte zeigen des Weiteren, dass mit unvorhersehbaren drastischen Kostensteigerungen während der Bauphase zu rechnen ist. Aufgrund u.a. militärischer Nutzungsmöglichkeiten der Kernenergie werden Kernenergieprojekte oft auch stark staatlich subventioniert, wodurch ein „wirtschaftlicher“ Betrieb teils überhaupt erst möglich ist. Die hier dargestellten Fallbeispiele sollten daher sehr vorsichtig betrachtet werden. Für eine Einordnung der Rolle der Kernenergie zur Begrenzung der globalen Erwärmung benötigt es zudem weitere Faktoren, welche auf S. 24 und 25 des Buches geschildert werden. Die hier dargestellte Abbildung darf also nicht isoliert betrachtet werden.

 

  1. IEA. Global Energy Review 2021. https://www.iea.org/reports/global-energy-review-2021 (2021).
  2. Frey, H. Kernenergie. (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-31512-2.
  3. IEA. Projected Costs of Generating Electricity. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (2020).
  4. Hoffmann, C. GESCHÄFTSMODELL ENERGIEWENDE Eine Antwort auf das »Die-Kosten-der-Energiewende«-Argument. http://publica.fraunhofer.de/documents/N-370480.html (2015).
  5. Energy-Charts. Wöchentlicher Anteil der Solarenergie an der Stromerzeugung in Deutschland 2021. https://energy-charts.info/charts/renewable_share/chart.htm?l=de&c=DE&year=2021&share=solar_share (2021).
  6. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  7. Projected Costs of Generating Electricity. https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf (2020).
  1. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  2. Durstewitz, M. Windenergie Report Deutschland 2017. http://windmonitor.iee.fraunhofer.de/opencms/export/sites/windmonitor/img/Windmonitor-2017/WERD_2017_180523_Web_96ppi.pdf (2017).
  3. Fraunhofer IWES. Strategiebericht 2020-2025. https://www.iwes.fraunhofer.de/content/dam/windenergie/de/documents/RZ_IWES-Strategiebericht2020_DE.pdf (2020).
  4. Blum, U., Rosenthal, E. & Diekmann, B. Energie – Grundlagen für Ingenieure und Naturwissenschaftler. (Springer Fachmedien Wiesbaden, 2020). doi:10.1007/978-3-658-26933-3.
  5. Breitkopf, A. Jährlicher Stromverbrauch eines 4-Personen-Haushalts in Deutschland nach Gebäudetyp im Jahr 2019. https://de.statista.com/statistik/daten/studie/558288/umfrage/stromverbrauch-einen-4-personen-haushalts-in-deutschland/ (2020).
  6. McKenna, R. et al. On the socio-technical potential for onshore wind in Europe: A response to Enevoldsen et al. (2019), Energy Policy, 132, 1092-1100. Energy Policy 145, (2020).
  7. Umwelt Bundesamt. Windenergie an Land. https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/windenergie-an-land#flaeche (2021).
  8. Seiler, E., Bilitewski, B. & Woidasky, J. Recycling von Windkraftanlagen. http://publica.fraunhofer.de/documents/N-223567.html (2013).
  9. Hau, E. Windkraftanlagen. (Springer Berlin Heidelberg, 2016). doi:10.1007/978-3-662-5315