Literaturverzeichnis

“Machste dreckig – Machste sauber: Die Klimalösung”

Sollte Ihnen ein inhaltlicher Fehler auffallen, so zögern Sie bitte nicht uns zu kontaktieren: info@klimawandel-buch.de

  1. Komarnicki, P., Kranhold, M. & Styczynski, Z. A. Einführung – klimapolitische Ziele der nachhaltigen Energieversorgung. in (2021). doi:10.1007/978-3-658-33559-5_1.
  2. Deckert, R. & Saß, A. Auf dem Weg zur Energiewirtschaft 4.0. in Digitalisierung und Energiewirtschaft: Technologischer Wandel und wirtschaftliche Auswirkungen (eds. Deckert, R. & Saß, A.) 11–36 (Springer Fachmedien Wiesbaden, 2020). doi:10.1007/978-3-658-27791-8_3.
  3. Benker, F. Internationale Wirtschaftspolitik und Klimawandel. in Megatrends aus Sicht der Volkswirtschaftslehre: Demografischer Wandel – Globalisierung & Umwelt – Digitalisierung (eds. Rebeggiani, L., Wilke, C. B. & Wohlmann, M.) 127–148 (Springer Fachmedien Wiesbaden, 2020). doi:10.1007/978-3-658-30129-3_7.
  4. Grotzinger, J. & Jordan, T. Mensch und Umwelt. in Press/Siever Allgemeine Geologie (eds. Grotzinger, J. & Jordan, T.) 643–678 (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48342-8_23.
  5. Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change 11, 207–212 (2021).
  6. Ribes, A., Zwiers, F. W., Azaïs, J.-M. & Naveau, P. A new statistical approach to climate change detection and attribution. Climate Dynamics 48, 367–386 (2017).
  7. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  8. Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nature Geoscience 5, 31–36 (2012).
  9. van Wesemael, D. et al. Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science 102, 1780–1787 (2019).
  10. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021)
  2. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. https://www.ncdc.noaa.gov/cag/ (2021).
  3. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  4. Brunetti, M. & Prodi, F. The climate system. EPJ Web Conf. 98, (2015).
  5. Rahmstorf, S. & Schellnhuber, H. J. Der Klimawandel. (C.H.Beck, 2006).
  6. KONDRATYEV, K. J. & MOSKALENKO, N. I. The role of carbon dioxid and other minor gaseous components and aerosols in the radiation budget. in The Global Climate (ed. Houghton, J. T.) 225–233 (Cambridge University Press, 1984).
  7. Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).
  8. Beauchemin, K. & M McGinn, S. Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil1. Journal of animal science 84, (2006).
  9. Philipona, R., Dürr, B., Ohmura, A. & Ruckstuhl, C. Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophysical Research Letters 32, (2005).
  10. Stephens, G. L. et al. The Global Character of the Flux of Downward Longwave Radiation. Clim. 25, 2329–2340 (2011).
    1. https://journals.ametsoc.org/view/journals/clim/25/7/jcli-d-11-00262.1.xml
  11. Kaicun, W. & Shunlin, L. Global atmospheric downward longwave radiation over land surface under all‐sky conditions from 1973 to 2008. Geophys. Res. Atmos. 114, (2009). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD011800
  12. Harries, J. E., Brindley, H. E., Sagoo, P. J. & Bantges, R. J. erratum: Increase in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature 410, 1124 (2001). http://www.grandkidzfuture.com/the-climate-problem/ewExternalFiles/Harries%202001%20GHG%20forcing%20change.pdf
  13. Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change 11, 207–212 (2021).
  14. Ribes, A., Zwiers, F. W., Azaïs, J.-M. & Naveau, P. A new statistical approach to climate change detection and attribution. Climate Dynamics 48, 367–386 (2017).
  15. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  16. Wigley, T. M. L. & Santer, B. D. A probabilistic quantification of the anthropogenic component of twentieth century global warming. Climate Dynamics 40, 1087–1102 (2013).
  17. Gillett, N. P., Arora, V. K., Flato, G. M., Scinocca, J. F. & von Salzen, K. Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophysical Research Letters 39, (2012).
  18. Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nature Geoscience 5, 31–36 (2012).
  19. Stone, DáithíA., Allen, M. R., Selten, F., Kliphuis, M. & Stott, P. A. The Detection and Attribution of Climate Change Using an Ensemble of Opportunity. Journal of Climate 20, 504–516 (2007).
  20. Meehl, G. A. et al. Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate. Journal of Climate 17, (2004)
  1. Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proceedings of the National Academy of Sciences 109, (2012).
  2. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015)
  3. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
  4. WGMS (2017): Fluctuations of Glaciers Database. World Glacier Monitoring Service, Zurich, Switzerland. DOI:10.5904/wgms-fog-2017-10. Online access: http://dx.doi.org/10.5904/wgms-fog-2017-10
  5. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
  1. Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nature Climate Change 7, 774–782 (2017).
  2. World Bank. Gross domestic product 2020. https://databank.worldbank.org/data/download/GDP.pdf (2021).
  3. Urban, M. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
  4. Hales, S., Kovats, S., Campbell-Lendrum, D. & Lloyd, S. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. (2014).
  5. Climate vulnerability monitor 2: A guide to the cold calculus of a hot planet. https://daraint.org/wp-content/uploads/2012/09/CVM2ndEd-FrontMatter.pdf (2012).
  6. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).
  7. Robine, J.-M., Cheung, K., Roy, S., Oyen, H. & Herrmann, F. Report on excess mortality in Europe during summer 2003. EU Community Action Programme for Public Health, Grant Agreement (2007).
  8. Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. The Lancet 397, (2021).
  9. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases 13, e0007213- (2019).
  10. Richardson, K. & Bradshaw, C. Assessment of the impacts of climate change on national level food insecurity using the Hunger and Climate Vulnerability Index. https://www.helixclimate.eu/wp-content/uploads/2018/04/HELIX-603864-D5.7-Hunger-and-Climate-Vulneraibility-Index.pdf (2017).
  11. Mora, C. et al. Global risk of deadly heat. Nature Climate Change 7, 501–506 (2017).
  12. Selby, J. & Hoffmann, C. Rethinking Climate Change, Conflict and Security. Geopolitics 19, 747–756 (2014).
  13. Koubi, V. Climate Change and Conflict. Annual Review of Political Science 22, 343–360 (2019).
  14. Report on Effects of a Changing Climate to the Department of Defense. https://media.defense.gov/2019/Jan/29/2002084200/-1/-1/1/CLIMATE-CHANGE-REPORT-2019.PDF (2019).
  15. 2014 Climate Change Adaptation Roadmap. https://www.acq.osd.mil/eie/Downloads/CCARprint_wForward_e.pdf (2014).
  16. Morales, E. Global Climate Change as a Threat to U.S. National Security. Journal of Strategic Security 8, 134–148 (2015).
  17. Huang, B., M. J. Menne, T. Boyer, E. Freeman, B. E. Gleason, J. H. Lawrimore, C. Liu, J. J. Rennie, C. Schreck, F. Sun, R. Vose, C. N. Williams, X. Yin, H.-M. Zhang, 2020: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. , Climate, 33, 1351-1379, DOI: 10.1175/JCLI-D-19-0395.1
  18. Kapsenberg, L. & Cyronak, T. Ocean acidification refugia in variable environments. Global Change Biology 25, (2019).
  1. World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (2021).
  2. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  3. Höök, M. & Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52, 797–809 (2013).
  4. Yadvinder, M. et al. Climate Change, Deforestation, and the Fate of the Amazon. Science 319, 169–172 (2008).
  5. Tongwane, M. I. & Moeletsi, M. E. Emission factors and carbon emissions of methane from enteric fermentation of cattle produced under different management systems in South Africa. Journal of Cleaner Production 265, 121931 (2020).
  6. Chen, H. et al. Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting. Bioresource Technology 266, 82–88 (2018).
  7. Zhu, E. et al. Identify the optimization strategy of nitrogen fertilization level based on trade-off analysis between rice production and greenhouse gas emission. Journal of Cleaner Production 239, 118060 (2019).
  8. Simmonds, P. G. et al. Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements. Atmospheric Chemistry and Physics 17, (2017).
  9. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021).
  1. United Nations. Paris Agreement. (2015).
  2. Banet, C. The Paris Agreement to the UNFCCC: Underlying Dynamics and Expected Consequences for the Energy Sector. in 71–91 (2017).
  3. Kern, F. & Rogge, K. S. The pace of governed energy transitions: Agency, international dynamics and the global Paris agreement accelerating decarbonisation processes? Energy Research & Social Science 22, 13–17 (2016).
  4. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  5. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  6. Liu, W. et al. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth System Dynamics 9, (2018).
  7. Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. A scientific critique of the two-degree climate change target. Nature Geoscience 9, (2015).
  8. Kharin, V. v. et al. Risks from Climate Extremes Change Differently from 1.5°C to 2.0°C Depending on Rarity. Earth’s Future 6, (2018).
  9. Liu, W. et al. Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2 °C Stabilization Scenarios. Geophysical Research Letters 45, (2018).
  10. Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nature Climate Change 7, 417–422 (2017).
  11. Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nature Communications 9, (2018).
  12. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Climate Change 3, 165–170 (2013).
  1. Kondo, M. et al. State of the science in reconciling top‐down and bottom‐up approaches for terrestrial CO 2 Global Change Biology 26, (2020).
  2. Lahn, B. Changing climate change: The carbon budget and the modifying-work of the IPCC. Social Studies of Science 51, (2021).
  3. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).
  4. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
  5. Robiou du Pont, Y. & Meinshausen, M. Warming assessment of the bottom-up Paris Agreement emissions pledges. Nature Communications 9, 4810 (2018).
  6. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  7. Honegger, M. & Reiner, D. The political economy of negative emissions technologies: consequences for international policy design. Climate Policy 18, 306–321 (2018).
  8. van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change 8, 391–397 (2018).
  9. Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters 13, (2018).
  10. Hilaire, J. et al. Negative emissions and international climate goals—learning from and about mitigation scenarios. Climatic Change 157, 189–219 (2019).
  11. van Wesemael, D. et al. Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science 102, 1780–1787 (2019).
  12. Statista Research Department. CO2-Emissionen weltweit in den Jahren 1960 bis 2020. 2021 https://de.statista.com/statistik/daten/studie/37187/umfrage/der-weltweite-co2-ausstoss-seit-1751/.
  1. World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (2021).
  2. World Bank. Population, total. https://data.worldbank.org/indicator/SP.POP.TOTL (2020).
  3. Kohler, M. CO2 emissions, energy consumption, income and foreign trade: A South African perspective. Energy Policy 63, 1042–1050 (2013).
  4. Moheeldeen, A. & Abugamos, H. Income-carbon Emissions Nexus for Middle East and North Africa Countries: A Semi-parametric Approach. International Journal of Energy Economics and Policy 7, 152–159 (2017).
  5. Andrew, R. M., 2019. Global CO2 emissions from cement production, 1928-2018. Earth System Science Data, 11(4), 1675-1710, DOI: 10.5194/essd-11-1675-2019. Available at: https://www.earth-syst-sci-data.net/11/1675/2019/
    Andrew, R. M., 2020a. Timely estimates of India’s annual and monthly fossil CO2 emissions, Earth System Science Data, 12 (4), 2411–2421, DOI: 10.5194/essd-12-2411-2020. Available at: https://essd.copernicus.org/articles/12/2411/2020/
    Andrew, R. M., 2020b. A comparison of estimates of global carbon dioxide emissions from fossil carbon sources, Earth System Science Data, 12, 1437–1465, DOI: 10.5194/essd-12-1437-2020. Available at: https://essd.copernicus.org/articles/12/1437/2020/essd-12-1437-2020-assets.html
    Gilfillan, D., Marland, G., Boden, T., and R. Andres, 2019. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center at Appalachian State University, Boone North Carolina. Available at: https://energy.appstate.edu/research/work-areas/cdiac-appstate, last access: 27 September 2019.
    UNFCCC, 2020. National Inventory Submissions 2020. United Nations Framework Convention on Climate Change. Available at: https://unfccc.int/ghg-inventories-annex-i-parties/2020, last access June 2020.
    BP, 2020. Statistical Review of World Energy. Available at: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html, last access June 2020.
  6. Climate Watch. Global Historical Emissions. https://www.climatewatchdata.org/ghg-emissions?breakBy=gas&end_year=2018&regions=DEU%2CGBR%2CFRA&source=GCP&start_year=1990 (2020).
  7. Lutz, W. How population growth relates to climate change. Proceedings of the National Academy of Sciences 114, (2017).
  8. Riti, J. S., Song, D., Shu, Y. & Kamah, M. Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? Journal of Cleaner Production 166, 1448–1461 (2017).
  9. Wang, Q., Jiang, R. & Zhan, L. Is decoupling economic growth from fuel consumption possible in developing countries? – A comparison of China and India. Journal of Cleaner Production 229, 806–817 (2019).
  10. Zuo, J., Zhang, L. & Chen, M. A new model for international cooperation on climate change: exploring Trilateral Cooperation. Climate Change Research (2021).
  11. Arab Asadi, S. Climate Change Concern and inevitable international cooperation. Public Law Studies Quarterly 50, 987–1005 (2020).
  12. Rimmer, M. The Paris Agreement: Intellectual Property, Technology Transfer, and Climate Change. in Intellectual Property and Clean Energy (Springer Singapore, 2018). doi:10.1007/978-981-13-2155-9_2.
  13. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  14. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  15. Andrew, R. Figures from the Global Carbon Budget 2020Andr. CICERO Center for International Climate Research https://folk.universitetetioslo.no/roberan/GCB2020.shtml (2019).
  16. Global Carbon Project. Supplemental data of Global Carbon Budget 2020. https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020 (2020) doi:10.18160/gcp-2020.
  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  2. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. https://www.ncdc.noaa.gov/cag/ (2021).
  3. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases 13, e0007213- (2019).
  4. Richardson, K. & Bradshaw, C. Assessment of the impacts of climate change on national level food insecurity using the Hunger and Climate Vulnerability Index. https://www.helixclimate.eu/wp-content/uploads/2018/04/HELIX-603864-D5.7-Hunger-and-Climate-Vulneraibility-Index.pdf (2017).
  5. Mora, C. et al. Global risk of deadly heat. Nature Climate Change 7, 501–506 (2017).
  6. Selby, J. & Hoffmann, C. Rethinking Climate Change, Conflict and Security. Geopolitics 19, 747–756 (2014).
  7. Koubi, V. Climate Change and Conflict. Annual Review of Political Science 22, 343–360 (2019).
  8. Report on Effects of a Changing Climate to the Department of Defense. https://media.defense.gov/2019/Jan/29/2002084200/-1/-1/1/CLIMATE-CHANGE-REPORT-2019.PDF (2019).
  9. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (2021).
  10. December 2020 Climate Action Tracker Paris Agreement turning point. https://climateactiontracker.org/documents/829/CAT_2020-12-01_Briefing_GlobalUpdate_Paris5Years_Dec2020.pdf (2020).
  11. Peters, G. P. et al. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change 10, 3–6 (2020).
  12. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  13. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021)

Your Content Goes Here

  1. Geller, W. Thermodynamik für Maschinenbauer. (Springer Berlin Heidelberg, 2015). doi:10.1007/978-3-662-44961-5.
  2. Wagner, A. Photovoltaik Engineering. (Springer Berlin Heidelberg, 2015). doi:10.1007/978-3-662-48640-5.
  3. Heinze, H.-E. & Tschöke, H. Definition und Einteilung der Hubkolbenmotoren. in Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven (eds. van Basshuysen, R. & Schäfer, F.) 9–16 (Springer Fachmedien Wiesbaden, 2017). doi:10.1007/978-3-658-10902-8_2.
  4. Energietechnik. (Springer Fachmedien Wiesbaden, 2015). doi:10.1007/978-3-658-07454-8.
  5. Cleveland, C. J. & Morris, C. Dictionary of Energy. (Elsevier, 2015). doi:10.1016/C2009-0-64490-1.
  6. Konstantin, P. Praxisbuch Energiewirtschaft. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-49823-1.
  7. Goethe-Gymnasium Regensburg. Das System Bahn: Der ICE Eine Publikation des Goethe-Gymnasiums Regensburg in Zusammenarbeit mit der Deutschen Bahn AG. https://www.db-systemtechnik.de/resource/blob/1665152/b1e975afc4621103696b63e8247d37ce/Aktuell_D_Schulbroschuere-Regensburg_Das-System-Bahn-der-ICE-data.pdf (2013).
  8. Kerntechnik Deutschland e.V. Zahlen, Kernkraftwerke in Betrieb. https://www.kernd.de/kernd/themen/strom/Zahlen-und-Fakten/01_index.php#anchor_f93853ce_Accordion-Kernkraftwerke-in-Betrieb (2020).
  9. United Nations. Energy Statistics Pocketbook 2021. https://unstats.un.org/unsd/energystats/pubs/documents/2021pb-web.pdf (2021).
  1. Fischer, T., Ganal, H. & Hoffmann, C. Barometer Energiewende 2019. https://www.barometer-energiewende.de/content/dam/iee/barometer-energiewende/documents/Barometer/2019_Barometer_online_d.pdf (2019).
  2. bp. Full report – Statistical Review of World Energy 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (2021).
  3. bp. Updated methodology for converting non-fossil electricity generation to primary energy.
  4. Smil, V. Energy Transitions: Global and National Perspectives (Second expanded and updated edition). (2016).
  5. Schlömer, S. et al. Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf (2014).
  6. Liu, F. & van den Bergh, J. C. J. M. Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA. Energy Policy 138, (2020).
  1. Kunz, C. Energiespeicher: Technologien und ihre Bedeutung für die Energiewende. Renews Spezial vol. 88 (2019).
  2. Fischer, T. et al. Energiewende Barometer. (2019).
  3. Göke, L., Kemfert, C., Kendziorski, M. & von Hirschausen, C. 100 Prozent erneuerbare Energien für Deutschland: Koordinierte Ausbauplanung notwendig. DIW Wochenbericht (2021).
  4. Kendziorski, M., Göke, L., Kemfert, C., von Hirschausen, C. & Zozmann, E. 100% erneuerbare Energie für Deutschland unter besonderer Berücksichtigung von Dezentralität und räumlicher Verbrauchsnähe – Potenziale, Szenarien und Auswirkungen auf Netzinfrastrukturen. (2021).
  5. Rohrig, K. et al. Energiewirtschaftliche Bedeutung der Offshore-Windenergie für die Energiewende. (2013).
  6. Energiespeicher – Bedarf, Technologien, Integration. vol. 2 (Springer Berlin Heidelberg, 2017).
  7. Bellarmine, G. T. Load management techniques. in Proceedings of the IEEE SoutheastCon 2000. “Preparing for The New Millennium” (Cat. No.00CH37105) 139–145 (2000). doi:10.1109/SECON.2000.845449.
  8. Wirth, H. Aktuelle Fakten zur Photovoltaik in Deutschland. (2021).
  9. Ritchie, H. & Roser, M. Electricity Mix. https://ourworldindata.org/electricity-mix (2021).
  1. Buchholz, B. M. & Styczynski, Z. A. Smart Grids. (Springer Berlin Heidelberg, 2020). doi:10.1007/978-3-662-60930-9.
  2. Bundesministerium für Wirtschaft und Energie. Intelligente Netze . https://www.bmwi.de/Redaktion/DE/Artikel/Energie/intelligente-netze.html (2021).
  3. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-37380-0.
  4. Gruber, A., Biedermann, F., von Roon, S. & Carr, L. Regionales Lastmanagement – Potenziale Stromintensiver Prozesse. in 13. Symposium Energieinnovation (2014).
  5. Tao, L. & Gao, Y. Real-time pricing for smart grid with distributed energy and storage: A noncooperative game method considering spatially and temporally coupled constraints. International Journal of Electrical Power & Energy Systems 115, 105487 (2020).
  6. Kabalci, E. & Kabalci, Y. From Smart Grid to Internet of Energy. (Elsevier, 2020). doi:10.1016/C2018-0-01637-0.
  1. IEA. Global Energy Review 2021. https://www.iea.org/reports/global-energy-review-2021 (2021).
  2. Frey, H. Kernenergie. (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-31512-2.
  3. IEA. Projected Costs of Generating Electricity. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (2020).
  4. Hoffmann, C. GESCHÄFTSMODELL ENERGIEWENDE Eine Antwort auf das »Die-Kosten-der-Energiewende«-Argument. http://publica.fraunhofer.de/documents/N-370480.html (2015).
  5. Energy-Charts. Wöchentlicher Anteil der Solarenergie an der Stromerzeugung in Deutschland 2021. https://energy-charts.info/charts/renewable_share/chart.htm?l=de&c=DE&year=2021&share=solar_share (2021).
  6. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  7. Projected Costs of Generating Electricity. https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf (2020).
  1. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  2. Durstewitz, M. Windenergie Report Deutschland 2017. http://windmonitor.iee.fraunhofer.de/opencms/export/sites/windmonitor/img/Windmonitor-2017/WERD_2017_180523_Web_96ppi.pdf (2017).
  3. Fraunhofer IWES. Strategiebericht 2020-2025. https://www.iwes.fraunhofer.de/content/dam/windenergie/de/documents/RZ_IWES-Strategiebericht2020_DE.pdf (2020).
  4. Blum, U., Rosenthal, E. & Diekmann, B. Energie – Grundlagen für Ingenieure und Naturwissenschaftler. (Springer Fachmedien Wiesbaden, 2020). doi:10.1007/978-3-658-26933-3.
  5. Breitkopf, A. Jährlicher Stromverbrauch eines 4-Personen-Haushalts in Deutschland nach Gebäudetyp im Jahr 2019. https://de.statista.com/statistik/daten/studie/558288/umfrage/stromverbrauch-einen-4-personen-haushalts-in-deutschland/ (2020).
  6. McKenna, R. et al. On the socio-technical potential for onshore wind in Europe: A response to Enevoldsen et al. (2019), Energy Policy, 132, 1092-1100. Energy Policy 145, (2020).
  7. Umwelt Bundesamt. Windenergie an Land. https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/windenergie-an-land#flaeche (2021).
  8. Seiler, E., Bilitewski, B. & Woidasky, J. Recycling von Windkraftanlagen. http://publica.fraunhofer.de/documents/N-223567.html (2013).
  9. Hau, E. Windkraftanlagen. (Springer Berlin Heidelberg, 2016). doi:10.1007/978-3-662-53154-9.

Your Content Goes Here

  1. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  2. Wirth, H. & Ise F. Aktuelle Fakten zur Photovoltaik in Deutschland. (2020).
  3. Grotzinger, J. & Jordan, T. Press/Siever Allgemeine Geologie. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48342-8.
  4. Wesselak, V., Schabbach, T., Link, T. & Fischer, J. Handbuch Regenerative Energietechnik. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-53073-3.
  5. Energie aus Biomasse. (Springer Berlin Heidelberg, 2016). doi:10.1007/978-3-662-47438-9.
  6. Photovoltaics Report. www.ise.fraunhofer.de (2021).
  7. Wirth, H. & Ise, F. Aktuelle Fakten zur Photovoltaik in Deutschland. www.pv-fakten.de (2021).
  8. Lunardi, M. M., Alvarez-Gaitan, J. P., Bilbao, J. I. & Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. in Solar Panels and Photovoltaic Materials (InTech, 2018). doi:10.5772/intechopen.74390.
  9. Verordnung (EU) 2016/679 des Europäischen Parlaments und des Rates. https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=celex%3A32016R0679 (2016).
  10. Lammerant, L., Laureysens, I. & Driesen, K. Potential impacts of solar, geothermal and ocean energy on habitats and species protected under the habitats and birds directives. https://op.europa.eu/en/publication-detail/-/publication/edf7213a-02c9-11eb-8919-01aa75ed71a1/language-en (2020).
  11. Windkraftanlagen. (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-72151-2.
  12. IEA. Levelised Cost of Electricity Calculator. (2020).
  13. Energy & Utilities. Portugal receives new record PV solar tariff. (2020).
  14. Chrobak, P., Skovajsa, J. & Zalesak, M. Effect of cloudiness on the production of electricity by photovoltaic panels. MATEC Web of Conferences 76, (2016).

Your Content Goes Here

  1. Martin, K., Streicher, W. & Wiese, A. Erneuerbare Energien Systemtechnik · Wirtschaftlichkeit · Umweltaspekte: Systemtechnik · Wirtschaftlichkeit · Umweltaspekte. (2020). doi:10.1007/978-3-662-61190-6.
  2. Wesselak, V., Schabbach, T., Link, T. & Fischer, J. Handbuch Regenerative Energietechnik. (Springer, 2017).
  3. Hydropower Status Report – Sector trends and insights. https://hydropower-assets.s3.eu-west-2.amazonaws.com/publications-docs/2019_hydropower_status_report_0.pdf (2019).
  4. Global Energy Review 2019 – The latest trends in energy and emissions in 2019. (2019).
  5. Statistical Review of World Energy . https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (2021).
  6. International Hydropower Association (iha). Types of hydropower. https://www.hydropower.org/iha/discover-types-of-hydropower.
  7. Giesecke, J. & Mosonyi, E. Pumpspeicherkraftwerke. in Wasserkraftanlagen (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-540-88989-2_17.
  8. Giesecke, J. & Heimerl, S. Wasserkraftanlagen. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-53871-1.
  9. Krikorian, S. & International Atomic Energy Agency (IAEA). Preliminary Nuclear Power Facts and Figures for 2019. https://www.iaea.org/newscenter/news/preliminary-nuclear-power-facts-and-figures-for-2019 (2020).
  10. Gospodarczyk, M. M., Fisher, M. N. & International Atomic Energy Agency (IAEA). IAEA Releases 2019 Data on Nuclear Power Plants Operating Experience. https://www.iaea.org/newscenter/news/iaea-releases-2019-data-on-nuclear-power-plants-operating-experience (2020).
  11. Wikipedia. Drei-Schluchten-Talsperre. https://de.wikipedia.org/wiki/Drei-Schluchten-Talsperre (2021).
  12. Giesecke, J., Heimerl, S. & Mosonyi, E. Wasserkraftanlagen: Planung, Bau und Betrieb. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-53871-1.
  13. Lofthouse, J., Simmons, R. T. & Yonk, R. M. Reliability of Renewable Energy: Hydro. (2015).
  14. Renewable Energy Technologies: Cost Analysis Series – Hydropower. (2012).
  15. International Energy Agency (IEA). Levelised Cost of Electricity Calculator. https://www.iea.org/articles/levelised-cost-of-electricity-calculator (2020).
  1. Jering, A. et al. Umweltbundesamt: Globale Landflächen und Biomasse – nachhaltig und ressourcenschonend nutzen. www.umweltbundesamt.de (2013).
  2. Thornley, P. & Adams, P. Greenhouse Gas Balances of Bioenergy Systems. Greenhouse Gas Balances of Bioenergy Systems (2017).
  3. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  4. World Bioenergy Association. GLOBAL BIOENERGY STATISTICS 2019 World Bioenergy Association. https://www.worldbioenergy.org/uploads/201210%20WBA%20GBS%202020.pdf (2019).
  5. IEA. Global Energy Review 2021. https://www.iea.org/reports/global-energy-review-2021 (2021).
  6. Renewable Energy Agency, I. Global Bioenergy SUPPLY AND DEMAND PROJECTIONS: A working paper for REmap 2030. www.irena.org/remap (2014).
  7. IEA. World Energy Outlook 2020. https://www.iea.org/reports/world-energy-outlook-2020 (2020).
  8. REN 21. 2021. Renewables 2021 Global Status Report. https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.
  9. Rogall, H. Ökonomie der Nachhaltigkeit. (VS Verlag für Sozialwissenschaften, 2004). doi:10.1007/978-3-322-81029-8.
  1. Jering, A. et al. Umweltbundesamt: Globale Landflächen und Biomasse – nachhaltig und ressourcenschonend nutzen. www.umweltbundesamt.de (2013).
  2. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  3. Jering, A. et al. Sustainable use of global land and biomass resources. www.umweltbundesamt.de (2013).
  4. Thornley, P. & Adams, P. Greenhouse Gas Balances of Bioenergy Systems. Greenhouse Gas Balances of Bioenergy Systems (2017).
  5. WGBU. Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung. https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/hauptgutachten/hg2008/pdf/wbgu_jg2008.pdf (2008).
  6. Wirth, H. & Ise, F. Aktuelle Fakten zur Photovoltaik in Deutschland. www.pv-fakten.de (2021).
  7. World Bioenergy Association. GLOBAL BIOENERGY STATISTICS 2019 World Bioenergy Association. https://www.worldbioenergy.org/uploads/201210%20WBA%20GBS%202020.pdf (2019).
  8. Kunz, C. Energiespeicher: Technologien und ihre Bedeutung für die Energiewende. https://www.unendlich-viel-energie.de/media/file/3471.AEE_Renews_Spezial_88_Energiespeicher_web.pdf (2019).
  9. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  10. Renewable Energy Agency, I. Global Bioenergy SUPPLY AND DEMAND PROJECTIONS: A working paper for REmap 2030. www.irena.org/remap (2014).
  1. Koelzer, W. Lexikon zur Kernenergie. Ausgabe Januar 2019. (KIT Scientific Publishing, 2019). doi:10.5445/KSP/1000088491.
  2. Quaschning, V. Regenerative Energiesysteme, Technologie – Berechnung – Klimaschutz. (Carl Hanser Verlag München, 2021).
  3. Völkle, H. Kernenergie. (Springer Berlin Heidelberg, 2020). doi:10.1007/978-3-662-59301-1.
  4. Kopytko, N. & Perkins, J. Climate change, nuclear power, and the adaptation–mitigation dilemma. Energy Policy 39, 318–333 (2011).
  5. Frey, H. Kernenergie. (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-31512-2.
  6. Brook, B. W. & Bradshaw, C. J. A. Key role for nuclear energy in global biodiversity conservation. Conservation Biology 29, (2015).
  7. Zwischenbericht Teilgebiete gemäß § 13 StandAG. https://www.bge.de/fileadmin/user_upload/Standortsuche/Wesentliche_Unterlagen/Zwischenbericht_Teilgebiete/Zwischenbericht_Teilgebiete_barrierefrei.pdf (2020).
  8. Bala, A. & Namadi, S. A Review of the Advantages and Disadvantages of Partitioning and Transmutation. International Journal of Science and Advanced Technology (2016).
  9. Sant’ana, L. P. & Cordeiro, T. Management of radioactive waste: A review. Proceedings of the International Academy of Ecology and Environmental Sciences 6, 38–43 (2016).
  10. Gesellschaft für Reaktorsicherheit (GRS). Deutsche Risikostudie Kernkraftwerke. https://www.grs.de/sites/default/files/pdf/Deutsche_Risikostudie_Kernkraftwerke.pdf (1979).
  11. Pampel, F. C. Support for Nuclear Energy in the Context of Climate Change: Evidence From the European Union. Organization & Environment 24, 249–268 (2011).
  12. Energy Agency, I. Nuclear Power in a Clean Energy System. https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system (2019).
  13. Our World in Data. Death rates from energy production per TWh. https://ourworldindata.org/grapher/death-rates-from-energy-production-per-twh (2014).
  1. Energy Agency, I. Nuclear Power in a Clean Energy System. https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system (2019).
  2. Völkle, H. Kernenergie. (Springer Berlin Heidelberg, 2020). doi:10.1007/978-3-662-59301-1.
  3. Kopytko, N. & Perkins, J. Climate change, nuclear power, and the adaptation–mitigation dilemma. Energy Policy 39, 318–333 (2011).
  4. Pistner, C. & Englert, M. Neue Reaktorkonzepte. https://www.oeko.de/fileadmin/oekodoc/Neue-Reaktorkonzepte.pdf (2017).
  5. Amis, T. et al. List of contributors. in Managing Global Warming (ed. Letcher, T. M.) xiii–xvi (Academic Press, 2019). doi:https://doi.org/10.1016/B978-0-12-814104-5.09990-7.
  6. Kernfusion – Berichte aus der Forschung. https://www.ipp.mpg.de/47334/berichte.pdf (2003).
  7. Quaschning, V. Regenerative Energiesysteme, Technologie – Berechnung – Klimaschutz. (Carl Hanser Verlag München, 2021).
  8. Krikorian, S. Preliminary Nuclear Power Facts and Figures for 2019. https://www.iaea.org/newscenter/news/preliminary-nuclear-power-facts-and-figures-for-2019 (2020).
  9. Gospodarczyk, M. M. & Fisher, M. N. IAEA Releases 2019 Data on Nuclear Power Plants Operating Experience. https://www.iaea.org/newscenter/news/iaea-releases-2019-data-on-nuclear-power-plants-operating-experience (2020).
  10. Eurostat. Supply, transformation and consumption of electricity. https://ec.europa.eu/eurostat/databrowser/view/nrg_cb_e/default/table?lang=en (2021).
  11. bp. Full report – Statistical Review of World Energy 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (2021).
  12. Projected Costs of Generating Electricity. https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf (2020).
  1. Cui, R. Y. et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nature Communications 10, 4759 (2019).
  2. Chakravarty, S. & Somanathan, E. There is no economic case for new coal plants in India. https://EconPapers.repec.org/RePEc:alo:isipdp:21-04 (2021).
  3. Global Energy Monitor. https://globalenergymonitor.org/.
  4. González-Eguino, M., Olabe, A. & Ribera, T. New coal-fired plants jeopardise paris agreement. Sustainability (Switzerland) 9, (2017).
  5. Edwards, M., Cui, R. Y., Bindl, M., Hultman, N. & Mathur, K. Quantifying the regional stranded asset risks from new coal plants under 1.5°C. (2021) doi:10.21203/rs.3.rs-544877/v1.
  6. van Breevoort, P. et al. The Coal Gap: planned coal-fired power plants inconsistent with 2˚C and threaten achievement of INDCs Climate Action T racker Update. http://endcoal.org/tracker/ (2015).
  7. Guo, J.-X. & Huang, C. Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050. Applied Energy 259, 114112 (2020).
  8. IEA GREENHOUSE GAS R&D PROGRAMME Towards Zero Emissions CCS in Power Plants Using Higher Capture Rates or Biomass. www.ieaghg.org (2019).
  9. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 11, 1062–1176 (2018).
  10. Irlam, L. GLOBAL COSTS OF CARBON CAPTURE AND STORAGE 2017 Update. https://www.globalccsinstitute.com/archive/hub/publications/201688/global-ccs-cost-updatev4.pdf (2017).
  11. Schlömer, S. et al. Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf (2014).
  12. Budinis, S., Krevor, S., Dowell, N. mac, Brandon, N. & Hawkes, A. An assessment of CCS costs, barriers and potential. Energy Strategy Reviews 22, 61–81 (2018).
  13. Temple-Smith, L. & Beck, L. Is CCS expensive? https://www.globalccsinstitute.com/resources/publications-reports-research/is-ccs-expensive/ (2020).
  14. Kelsall, G. Carbon capture utilisation and storage – status, barriers and potential. https://www.sustainable-carbon.org/report/carbon-capture-utilisation-and-storage-status-barriers-and-potential-ccc-304/ (2020).
  1. Segelenergie – Follow the wind. Das Windpotential auf dem Meer kann ein Vielfaches unseres Energiebedarfs decken. https://segelenergie.de/.
  2. Vattenfall. Erneuerbare Energien: Strom-Bojen nutzen Wasserkraft. https://www.vattenfall.de/infowelt-energie/strom-bojen-die-neuen-klimahelden.
  3. Cherubini, A., Papini, A., Vertechy, R. & Fontana, M. Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).
  1. International Energy Agency (IEA). World Energy Balances: Overview. https://www.iea.org/reports/world-energy-balances-overview (2021).
  2. Renewables 2019 – Analysis and forecast to 2024. (2019).
  3. Quaschning, V. Regenerative Energiesysteme: Technologie – Berechnung – Klimaschutz. (Carl Hanser Verlag, 2021).
  4. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  5. Watter, H. Regenerative Energiesysteme. (Springer Fachmedien Wiesbaden, 2015). doi:10.1007/978-3-658-09638-0.
  6. Brauner, G. Systemeffizienz bei regenerativer Stromerzeugung: Strategien für effiziente Energieversorgung bis 2050. (Springer Vieweg, 2019).
  7. Konstantin, P. Praxisbuch der Fernwärmeversorgung. (Springer Berlin Heidelberg, 2018). doi:10.1007/978-3-662-55911-6.
  1. Schabbach, T. & Leibbrandt, P. Solarthermie. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-53907-7.
  2. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  3. Kaltschmitt, M. Regenerative Energien in Österreich. (Vieweg+Teubner, 2009). doi:10.1007/978-3-8348-9327-7.
  4. Kunz, C. Energiespeicher: Technologien und ihre Bedeutung für die Energiewende. https://www.unendlich-viel-energie.de/media/file/3471.AEE_Renews_Spezial_88_Energiespeicher_web.pdf (2019).
  5. Wesselak, V., Schabbach, T., Link, T. & Fischer, J. Handbuch Regenerative Energietechnik. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-53073-3.
  6. Oliva, A., Herkel, S. & Elci, M. EnWiSol. Solarthermie in der städtischen Energieversorgung – Energiewirtschaftliche Analyse und Demonstrationsvorhaben “Freiburg-Gutleutmatten.” http://publica.fraunhofer.de/documents/N-549554.html (2019).
  7. Sterchele, P., Brandes, J. & Heilig, J. WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSTEM. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Fraunhofer-ISE-Studie-Wege-zu-einem-klimaneutralen-Energiesystem.pdf (2020).
  8. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  1. Renewable Energy Agency, I. Geothermal power: Technology brief. (2017).
  2. Wesselak, V., Schabbach, T., Link, T. & Fischer, J. Handbuch Regenerative Energietechnik. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-53073-3.
  3. Stober, I. & Bucher, K. Geothermie. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-41763-4.
  4. Weber, J. & Moeck I. Möglichkeiten und Chancen in Deutschland. http://www.leibniz-liag.de (2019).
  1. Renewable Energy Agency, I. Geothermal power: Technology brief. (2017).
  2. Stober, I. & Bucher, K. Geothermie. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-41763-4.
  3. Handbuch Tiefe Geothermie. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-54511-5.
  4. Weber, J. & Moeck I. Möglichkeiten und Chancen in Deutschland. http://www.leibniz-liag.de (2019).
  5. Projected Costs of Generating Electricity. https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf (2020).
  1. Quaschning, V. Regenerative Energiesysteme: Technologie – Berechnung – Klimaschutz. (Carl Hanser Verlag, 2019).
  2. Watter, H. Erdwärme und Wärmepumpe. in Regenerative Energiesysteme (Springer Fachmedien Wiesbaden, 2015). doi:10.1007/978-3-658-09638-0_6.
  3. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  4. Ruhnau, O., Hirth, L. & Praktiknjo, A. Time series of heat demand and heat pump efficiency for energy system modeling. Scientific Data 6, (2019).
  5. Bongs, C. et al. Wärmepumpen Heizen – Kühlen – Umweltenergie nutzen. (Fraunhofer IRB Verlag, 2013).
  6. Fraunhofer ISE. Wärmepumpe mit dem klimafreundlichen Kältemittel Propan für die Aufstellung im Haus entwickelt. (2013).
  7. Häfner, F., Wagner, R.-M. & Meusel, L. Wärmepumpen. in Bau und Berechnung von Erdwärmeanlagen (Springer Berlin Heidelberg, 2015). doi:10.1007/978-3-662-48201-8_3.
  8. Government of Canada. Heating and Cooling With a Heat Pump. https://www.nrcan.gc.ca/energy-efficiency/energy-star-canada/about/energy-star-announcements/publications/heating-and-cooling-heat-pump/6817 (2021).
  1. World Energy Outlook 2019. (2019).
  2. International Energy Agency (IEA). World Energy Statistics and Balances. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances (2021).
  3. Naegler, T., Simon, S., Klein, M. & Gils, H. C. Quantification of the European industrial heat demand by branch and temperature level. International Journal of Energy Research 39, 2019–2030 (2015).
  4. Abergel, T. & Delmastro, C. Heating. https://www.iea.org/reports/heating (2021).
  5. Sandalow, D. et al. ICEF 2019 Roadmap: Industrial Heat Decarbonization. (2019).
  6. Spektrum. Joulesche Wärme. https://www.spektrum.de/lexikon/physik/joulesche-waerme/7684 (1998).
  7. Brauner, G. Systemeffizienz bei regenerativer Stromerzeugung: Strategien für effiziente Energieversorgung bis 2050. (Springer Vieweg, 2019).
  8. Induktives Erwärmen – Wärmen, Härten, Glühen, Löten, Schweißen. (Vulkan-Verlag GmbH, 2013).
  9. Lovegrove, K. et al. Renewable energy options for industrial process heat. (2019).
  10. Hobohm, J. et al. Status und Perspektiven flüssiger Energieträger in der Energiewende. (2018).
  11. International Energy Agency (IEA). Renewable heat. https://www.iea.org/reports/renewables-2020/renewable-heat (2020).
  12. Frisch, S., Pehnt, M., Otter, P. & Nast, M. Prozesswärme im Marktanreizprogramm Zwischenbericht zu Perspektivische Weiterentwicklung des Marktanreizprogramms FKZ 03MAP123. (2010).
  1. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  1. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  2. bp. Full report – Statistical Review of World Energy 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (2021).
  3. Renewable energy consumption (% of total final energy consumption).
  4. Komarnicki, P., Kranhold, M. & Styczynski, Z. A. Sektorenkopplung – Energetisch-nachhaltige Wirtschaft der Zukunft. (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-33559-5.
  5. Komarnicki, P., Haubrock, J. & Styczynski, Z. A. Elektromobilität und Sektorenkopplung. (Springer Berlin Heidelberg, 2018). doi:10.1007/978-3-662-56249-9.
  6. Fischer, T., Ganal, H. & Hoffmann, C. Barometer Energiewende 2019. https://www.barometer-energiewende.de/content/dam/iee/barometer-energiewende/documents/Barometer/2019_Barometer_online_d.pdf (2019).
  7. Erbach, G. Energy storage and sector coupling Towards an integrated, decarbonised energy system. https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/637962/EPRS_BRI(2019)637962_EN.pdf (2019).
  1. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  2. Kunz, C. Energiespeicher: Technologien und ihre Bedeutung für die Energiewende. https://www.unendlich-viel-energie.de/media/file/3471.AEE_Renews_Spezial_88_Energiespeicher_web.pdf (2019).
  3. Fürstenwerth, D. Stromspeicher in der Energiewende. https://www.agora-energiewende.de/fileadmin/Projekte/2013/speicher-in-der-energiewende/Agora_Speicherstudie_Web.pdf (2014).
  4. Wirth, H. & Ise, F. Aktuelle Fakten zur Photovoltaik in Deutschland. www.pv-fakten.de (2021).
  5. BMWi. Was sind eigentlich “Flexibilitätsoptionen”? https://www.bmwi-energiewende.de/EWD/Redaktion/Newsletter/2018/01/Meldung/direkt-erklaert.html (2018).
  6. Sterchele, P., Brandes, J. & Heilig, J. WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSTEM. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Fraunhofer-ISE-Studie-Wege-zu-einem-klimaneutralen-Energiesystem.pdf (2020).
  1. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  2. Thielmann, A., Sauer, A. & Schnell, M. Technologie-Roadmap Stationäre Energiespeicher 2030. (2015).
  3. Sterchele, P., Brandes, J. & Heilig, J. WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSTEM. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Fraunhofer-ISE-Studie-Wege-zu-einem-klimaneutralen-Energiesystem.pdf (2020).
  4. Komarnicki, P., Lombardi, P. & Styczynski, Z. Electric Energy Storage Systems. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-53275-1.
  5. Mongird, K. et al. 2020 Grid Energy Storage Technology Cost and Performance Assessment. https://www.pnnl.gov/sites/default/files/media/file/Final%20-%20ESGC%20Cost%20Performance%20Report%2012-11-2020.pdf (2020).
  6. Department of Energy, U. Energy Storage Grand Challenge: Energy Storage Market Report. https://energy.gov/energy-storage-grand-challenge/downloads/energy-storage- (2020).
  7. Zapf, M. Stromspeicher und Power-to-Gas im deutschen Energiesystem. (Springer Fachmedien Wiesbaden, 2017). doi:10.1007/978-3-658-15073-0.
  8. Fürstenwerth, D. Stromspeicher in der Energiewende. https://www.agora-energiewende.de/fileadmin/Projekte/2013/speicher-in-der-energiewende/Agora_Speicherstudie_Web.pdf (2014).
  1. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  2. Fischer, T., Ganal, H. & Hoffmann, C. Barometer Energiewende 2019. https://www.barometer-energiewende.de/content/dam/iee/barometer-energiewende/documents/Barometer/2019_Barometer_online_d.pdf (2019).
  3. Quaschning, V. Regenerative Energiesysteme, Technologie-Berechnung-Klimaschutz. (2019).
  4. RCER. Energieforschung Ausgabe 2020. https://www.oth-regensburg.de/fileadmin/media/forschung/school-energy/pdf/RCER-2020-Energieforschung.pdf (2020).
  5. Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change 11, 384–393 (2021).
  6. Hobohm, J. Status und Perspektiven flüddiger Energieträger in der Energiewende. https://www.umsicht-suro.fraunhofer.de/content/dam/umsicht-suro/de/images/pressemitteilungen/2018/EndberichtPrognos/Prognos-Endbericht_Fluessige_Energietraeger_Web-final.pdf (2018).
  7. Hebling, C., Ragwitz, M. & Fleiter, T. Eine Wasserstoff-Roadmap für Deutschland. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/2019-10_Fraunhofer_Wasserstoff-Roadmap_fuer_Deutschland.pdf (2019).
  8. ENTSOG, Gas Infastructure Europe (GIE) & Hydrogen Europe. How to Transport and Store Hydrogen – Facts and Figures. https://www.hydrogeneurope.eu/wp-content/uploads/2021/05/ENTSOG_GIE_HydrogenEurope_QandA_hydrogen_transport_and_storage_FINAL.pdf (2021).
  9. Robinius, M., Linßen, J. & Grube, T. Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles. https://juser.fz-juelich.de/record/842477/files/Energie_Umwelt_408_NEU.pdf (2018).
  10. Wirth, H. & Ise, F. Aktuelle Fakten zur Photovoltaik in Deutschland. www.pv-fakten.de (2021).
  11. Kunz, C. Energiespeicher: Technologien und ihre Bedeutung für die Energiewende. https://www.unendlich-viel-energie.de/media/file/3471.AEE_Renews_Spezial_88_Energiespeicher_web.pdf (2019).
  12. Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change 11, 384–393 (2021).
  1. Perner, J., Unteutsch, M. & Lövenich, A. Die zukünftigen ­Kosten strombasierter synthetischer Brennstoffe. https://www.agora-energiewende.de/fileadmin/Projekte/2017/SynKost_2050/Agora_SynCost-Studie_WEB.pdf (2018).
  2. Einzelfragen zu synthetischen Kraftstoffen (E-Fuels), Herstellungskosten und Anrechnung auf den CO2-Flottenverbrauch. https://www.bundestag.de/resource/blob/818128/29f9702acd2ddfadf53b9816470949cb/WD-8-079-20-pdf-data.pdf (2020).
  3. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  4. Brynolf, S., Taljegard, M., Grahn, M. & Hansson, J. Electrofuels for the transport sector: A review of production costs. Renewable and Sustainable Energy Reviews 81, 1887–1905 (2018).
  5. Hebling, C., Ragwitz, M. & Fleiter, T. Eine Wasserstoff-Roadmap für Deutschland. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/2019-10_Fraunhofer_Wasserstoff-Roadmap_fuer_Deutschland.pdf (2019).
  6. EASAC. Hydrogen and synthetic fuels. (2020).
  7. Hobohm, J. Status und Perspektiven flüssiger Energieträger in der Energiewende. https://www.umsicht-suro.fraunhofer.de/content/dam/umsicht-suro/de/images/pressemitteilungen/2018/EndberichtPrognos/Prognos-Endbericht_Fluessige_Energietraeger_Web-final.pdf (2018).
  8. Hohmann, M. Preisentwicklung ausgewählter OPEC-Rohöle in den Jahren 1960 bis 2021. https://de.statista.com/statistik/daten/studie/810/umfrage/rohoelpreisentwicklung-opec-seit-1960/ (2021).
  9. Schwarz, A. & Wydra, S. Advanced Technologies for Industry – Product Watch. https://ati.ec.europa.eu/sites/default/files/2021-02/PtGL%20Synthetic%20fuels.pdf (2021).
  1. Tomschi, U. Flexible thermische Kraftwerke für die Energiewende. e & i Elektrotechnik und Informationstechnik 130, (2013).
  2. Fischer, T., Ganal, H. & Hoffmann, C. Barometer Energiewende 2019. https://www.barometer-energiewende.de/content/dam/iee/barometer-energiewende/documents/Barometer/2019_Barometer_online_d.pdf (2019).
  3. IEA. World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019 (2019).
  4. Hoffmann, C. GESCHÄFTSMODELL ENERGIEWENDE Eine Antwort auf das »Die-Kosten-der-Energiewende«-Argument. http://publica.fraunhofer.de/documents/N-370480.html (2015).
  5. Brauner, G. Die Bedeutung flexibler Kraftwerke für die Energiewende. e & i Elektrotechnik und Informationstechnik 130, (2013).
  6. Kraft-Wärme-Kopplung. (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-01425-3.
  7. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.

Your Content Goes Here

  1. Hallegatte, S. et al. THE ECONOMICS OF (AND OBSTACLES TO) ALIGNING DEVELOPMENT AND CLIMATE CHANGE ADAPTATION AUTHORS. www.gca.org. (2018).
  2. Deason, W. Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost. Renewable and Sustainable Energy Reviews 82, 3168–3178 (2018).
  3. Brown, P. T. & Saunders, H. Approximate calculations of the net economic impact of global warming mitigation targets under heightened damage estimates. PLOS ONE 15, (2020).
  4. IEA. Projected Costs of Generating Electricity 2020. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (2020).
  5. IRENA. RENEWABLE POWER GENERATION COSTS IN 2018. (2019).
  6. He, G. et al. Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system. Nature Communications 11, 2486 (2020).
  7. Bruckner, T., Bashmakov I & Mulugetta, Y. 2014: Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter7.pdf (2014).
  8. Kendziorski, M. et al. 100% erneuerbare Energie für Deutschland unter besonderer Berücksichtigung von Dezentralität und räumlicher Verbrauchsnähe Potenziale, Szenarien und Auswirkungen auf Netzinfrastrukturen. (2021).
  9. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  10. Strbac, G. & Aunedi, M. Whole-system cost of variable renewables in future GB electricity system. https://www.researchgate.net/publication/310400677_Whole-system_cost_of_variable_renewables_in_future_GB_electricity_system (2016).
  11. Riahi, K. et al. Long-term economic benefits of stabilizing warming without overshoot – the ENGAGE model intercomparison. (2020). doi:10.21203/rs.3.rs-127847/v1.
  12. Revesz, R. L. et al. Global warming: Improve economic models of climate change. Nature 508, 173–175 (2014).
  13. AON. Weather, Climate & Catastrophe Insight: 2018 Annual Report. https://www.aon.com/global-weather-catastrophe-natural-disasters-costs-climate-change-annual-report/index.html (2018).
  14. IEA. Projected Costs of Generating Electricity. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (2020).
  15. NordLink. Technischer Aufbau der ersten Gleichstromverbindung zwischen Deutschland und Norwegen. (2016).
  1. Energiewende. (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-26327-0.
  2. Argentur für Erneuerbare Energien. Die Akzeptanz für erneuerbare Energien im Spiegel von Umfragen für Industriestaaten. Renews Kompakt (2016).
  3. Stremke, S. & Dobbelsteen, A. Sustainable Energy Landscapes: Designing, Planning and Development. (2013).
  4. Hübner, G. et al. Akzeptanzfördernde Faktoren erneuerbarer Energien. doi:10.19217/skr551.
  5. Hofman, E., Oikonomou, V., Fujiwara, N., Flamos, A. & Karakosta, C. Acceleration of clean technology deployment within the EU: The role of social acceptance Project Coordinator Editor Project Dissemination. www.jiqweb.org (2014).
  1. Energiewende. (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-26327-0.
  2. Stankuniene, G., Streimikiene, D. & Kyriakopoulos, G. Systematic Literature Review on Behavioral Barriers of Climate Change Mitigation in Households. Sustainability 12, 7369 (2020).
  3. Hofman, E. Social Acceptance of Renewable Energy. http://climatepolicyinfohub.eu/social-acceptance-renewable-energy (2015).
  1. Energiewende. (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-26327-0.
  2. Hofman, E. Social Acceptance of Renewable Energy. http://climatepolicyinfohub.eu/social-acceptance-renewable-energy (2015).
  3. Handbuch Energiewende und Partizipation. (Springer Fachmedien Wiesbaden, 2018). doi:10.1007/978-3-658-09416-4.
  1. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  2. Bruckner, T., Bashmakov I & Mulugetta, Y. 2014: Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter7.pdf (2014).
  3. Energiewende. (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-26327-0.
  4. Sterner, M. Bioenergy and renewable power methane in integrated 100% renewable energy systems. http://publica.fraunhofer.de/documents/N-139644.html (2009).
  5. Sterner, M. & Stadler, I. Energiespeicher – Bedarf, Technologien, Integration. (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-48893-5.
  6. Komarnicki, P., Kranhold, M. & Styczynski, Z. A. Sektorenkopplung – Energetisch-nachhaltige Wirtschaft der Zukunft. (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-33559-5.
  7. Hoffmann, C. GESCHÄFTSMODELL ENERGIEWENDE Eine Antwort auf das »Die-Kosten-der-Energiewende«-Argument. http://publica.fraunhofer.de/documents/N-370480.html (2015).
  8. Energieeffizienz. (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-14251-2.
  9. Heuck, K., Dettmann, K.-D. & Schulz, D. Elektrische Energieversorgung. (Springer Fachmedien Wiesbaden, 2013). doi:10.1007/978-3-8348-2174-4.
  10. IEA. Energy Efficiency 2020. https://iea.blob.core.windows.net/assets/59268647-0b70-4e7b-9f78-269e5ee93f26/Energy_Efficiency_2020.pdf (2020).
  11. Edenhofer, O., Pichs-Madruga, R., Sokona, Y. & Seyboth, K. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigatio. https://www.ipcc.ch/site/assets/uploads/2018/03/SRREN_Full_Report-1.pdf (2018).
  12. Jacobson, M. Z. 100% Clean, Renewable Energy and Storage for Everything. (Cambridge University Press, 2020). doi:DOI: 10.1017/9781108786713.
  13. Kemfert, C. 100% Renewable Energy for Germany: Coordinated Expansion Planning Needed. https://www.diw.de/documents/publikationen/73/diw_01.c.822478.de/dwr-21-29-1.pdf (2021).
  14. Pathways towards a 100 % renewable electricity system. https://www.umweltrat.de/SharedDocs/Downloads/EN/02_Special_Reports/2011_10_Special_Report_Pathways_renewables.pdf?__blob=publicationFile (2011).
  15. Henning, H.-M. & Palzer, A. 100 % ERNEUERBARE ENERGIEN FÜR STROM UND WÄRME IN DEUTSCHLAND. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/studie-100-erneuerbare-energien-fuer-strom-und-waerme-in-deutschland.pdf (2012).
  1. Wikipedia. Burj Khalifa. (2021).
  2. Wikipedia. New Century Global Center. (2021).
  3. Wikipedia. Liste technischer Rekorde. (2021).
  4. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  1. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  2. Meggers, F. et al. Reduce CO2 from buildings with technology to zero emissions. Sustainable Cities and Society 2, (2012).
  3. United Nations Environment Programme (UNEP). 2019 Global Status Report for Buildings and Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. (2019).
  4. United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. (2020).
  5. Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nature Communications 12, (2021).
  6. Ürge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C. & Petrichenko, K. Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews 41, (2015).
  7. Cabeza, L. F. & Chàfer, M. Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy and Buildings 219, (2020).
  1. United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. (2020).
  2. Wesche, J. P. Energiewende im Gebäudesektor beschleunigen. https://www.isi.fraunhofer.de/de/blog/2019/waerme.html (2019).
  3. Energieeffizienzstrategie Gebäude: Wege zu einem nahezu klimaneutralen Gebäudebestand – Kurzfassung. (2015).
  4. Chitnis, M., Sorrell, S., Druckman, A., Firth, S. K. & Jackson, T. Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups. Ecological Economics 106, (2014).
  5. Lorek, S. & Spangenberg, J. H. Energy sufficiency through social innovation in housing. Energy Policy 126, (2019).
  6. United Nations Environment Programme (UNEP). 2019 Global Status Report for Buildings and Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. (2019).
  7. Umweltbundesamt. Energieverbrauchskennzeichnung. (2021).
  8. Energieeffizienzstrategie Gebäude: Wege zu einem nahezu klimaneutralen Gebäudebestand – Kurzfassung. (2015).
  9. Bürger, V. et al. Klimaneutraler Gebäudebestand 2050. (2016).
  10. Effizienzhaus-online: Einfach. Energie. Einsparen. Dämmung oder Heizung? Die richtige Reihenfolge bei der Sanierung. https://www.effizienzhaus-online.de/daemmung-oder-heizung/.
  11. Energiesparen im Haushalt: Wie Sie einfach und ohne Komfortverlust Ihren Energieverbrauch senken und Geld sparen können. (2012).
  12. Warmwasser: Komfortables Sparen -So geht’s! (2018).
  13. Fraunhofer ISE. Energy-charts: Nettostromerzeugung in Deutschland. https://energy-charts.info/charts/power/chart.htm?l=de&c=DE&stacking=stacked_absolute_area&week=45 (2021).
  14. Höjer, M. & Mjörnell, K. Measures and Steps for More Efficient Use of Buildings. Sustainability 10, (2018).
  15. Francart, N. et al. Sharing indoor space: stakeholders’ perspectives and energy metrics. Buildings and Cities 1, (2020).
  16. Bringing embodied carbon upfront – Coordinated action for the building and construction sector to tackle embodied carbon. (2019).
  17. Mi, Z. & Coffman, D. The sharing economy promotes sustainable societies. Nature Communications 10, (2019).
  18. Ruck, N. et al. Daylight in Buildings – A source book on daylighting systems and components. (2000).
  19. IEA. Sustainable Recovery. (2020).
  20. Aktive Solarthermie für Fern- und Nahwärmenetze . in Exergy Systems Innovation Die grüne Sonne für bessere Wärme (2010).
  21. energie-experten.org. Solarthermie-Anlagen für Nah- und Fernwärme. (2019).
  1. Buildings and Climate Change – Summary for Decision Makers. (2009).
  2. United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. (2020).
  3. Cabeza, L. F., Boquera, L., Chàfer, M. & Vérez, D. Embodied energy and embodied carbon of structural building materials: Worldwide progress and barriers through literature map analysis. Energy and Buildings 231, (2021).
  4. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  5. Reid, H. et al. Using wood products to mitigate climate change: a review of evidence and key issues for sustainable development. (2004). doi:10.13140/RG.2.2.19232.84485.
  6. Concrete needs to lose its colossal carbon footprint. Nature 597, (2021).
  7. Bataille, C. Low and zero emissions in the steel and cement industries: Barriers, technologies and policies. in 2019 GGSD Forum: Greening heavy and extractive industries (2019).
  8. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, (2018).
  9. Bürger, V. et al. Klimaneutraler Gebäudebestand 2050. (2016).
  10. IPCC. Buildings. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
  1. Laasch, T. & Laasch, E. Haustechnik – Grundlagen, Planung, Ausführung. (2012).
  2. Optimierungsstrategien im Nutzungszyklus von Immobilien. (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-23757-8.
  3. Thöne, M., Gierkink, M., Pickert, L., Kreuter, H. & Decker, H. CO₂-Bepreisung im Gebäudesektor und notwendige Zusatzinstrumente. (2019).
  4. IPCC. Buildings. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
  5. United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. (2020).
  6. Umweltbundesamt (UBA). Der Weg zum klimaneutralen Gebäudebestand. (2014).
  7. United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. (2020).
  8. Francart, N. et al. Sharing indoor space: stakeholders’ perspectives and energy metrics. Buildings and Cities 1, (2020).
  9. Universität zu Köln. Wohnen für Hilfe Deutschland. (2021).
  10. Ohnmacht, T., Z’Rotz, J. & Dang, L. Relationships between coworking spaces and CO 2 emissions in work-related commuting: first empirical insights for the case of Switzerland with regard to urban-rural differences. Environmental Research Communications 2, (2020).
  11. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  12. Sunderland, L. & Jahn, A. Energetische Mindeststandards für den Gebäudebestand. (2021).
  13. Thomas, S. et al. CO2-neutrale Gebäude bis spätestens 2045 – Ein Diskussionsbeitrag für eine ambitionierte und sozialverträgliche Politikstrategie. (2021).
  14. Sustainable-Finance-Beirat der Bundesregierung. Shifting the Trillions: Ein nachhaltiges Finanzsystem für die Große Transformation – 31 Empfehlungen des Sustainable-Finance-Beirats an die Bundesregierung. (2021).
  15. Klenert, D. et al. Making carbon pricing work for citizens. Nature Climate Change 8, (2018).
  16. Li, Y., Kubicki, S., Guerriero, A. & Rezgui, Y. Review of building energy performance certification schemes towards future improvement. Renewable and Sustainable Energy Reviews 113, (2019).
  17. Bundesministerium für Wirtschaft und Energie (BMWi). Fünfter Monitoring Bericht zur Energiewende – Die Energie der Zukunft – Berichtsjahr 2015. (2016).
  18. Wisser, K. Gebäudeautomation in Wohngebäuden (Smart Home) Eine Analyse der Akzeptanz . (Springer, 2018).
  1. Ürge-Vorsatz, D. et al. Advances Toward a Net-Zero Global Building Sector. Annual Review of Environment and Resources 45, 227–269 (2020).
  2. Mørck, O. C. Energy saving concept development for the MORE-CONNECT pilot energy renovation of apartment blocks in Denmark. Energy Procedia 140, 240–251 (2017).
  3. Schnieders, J. et al. Design and realisation of the Passive House concept in different climate zones. Energy Efficiency 13, 1561–1604 (2020).
  4. United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. (2020).
  5. IPCC. Buildings. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
  1. Hasan, M. A., Frame, D. J., Chapman, R. & Archie, K. M. Emissions from the road transport sector of New Zealand: key drivers and challenges. Environmental Science and Pollution Research 26, 23937–23957 (2019).
  2. Shah, I. H., Dawood, U. F., Jalil, U. A. & Adnan, Y. Climate co-benefits of alternate strategies for tourist transportation: The case of Murree Hills in Pakistan. Environmental Science and Pollution Research 26, 13263–13274 (2019).
  3. Xie, R., Huang, L., Tian, B. & Fang, J. Differences in Changes in Carbon Dioxide Emissions among China’s Transportation Subsectors: A Structural Decomposition Analysis. Emerging Markets Finance and Trade 55, 1294–1311 (2019).
  4. World Energy Outlook 2019. (2019).
  5. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  6. International Energy Agency (IEA). Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 2000-2030. https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030 (2019).
  7. Fourth IMO Greenhouse Gas Study. (2021).
  8. Ritchie, H. Cars, planes, trains: Where do CO2 emissions from transport come from? Our World in Data https://ourworldindata.org/co2-emissions-from-transport (2020).
  9. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  10. Emissions Gap Report 2020. (2020).
  1. Tracking Trends in a Time of Change: The Need for Radical Action Towards Sustainable Transport Decarbonisation, Transport and Climate Change Global Status Report 2nd Edition. (2021).
  2. Energy, transport and environment statistics 2020 edition. (2020).
  3. International Transport Forum (ITF). Decarbonising India’s Transport System: Charting the Way Forward. International Transport Forum Policy Papers 88, (2021).
  4. Jäntti, M. & Jenkins, S. P. Income Mobility. in 807–935 (2015). doi:10.1016/B978-0-444-59428-0.00011-4.
  5. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  6. Kolbe, K. Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transportation. Transport Policy 80, 1–11 (2019).
  7. Emissions Gap Report 2020. (2020).
  8. IPCC. Transport. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
  9. Umweltbundesamt. Vergleich der durchschnittlichen Emissionen einzelner Verkehrsmittel im Personenverkehr – Bezugsjahr 2019. https://www.umweltbundesamt.de/bild/vergleich-der-durchschnittlichen-emissionen-0 (2019).
  10. Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nature Climate Change 8, 260–263 (2018).
  11. Clausen, J., Schramm, S. & Hintemann, R. CliDiTrans Werkstattbericht 3-2: Virtuelle Konferenzen und Online-Zusammenarbeit in Unternehmen: Effektiver Klimaschutz oder Mythos? (2019).
  12. Statista. Geschäftsreisemarkt. https://de.statista.com/statistik/studie/id/7033/dokument/geschaeftsreisemarkt-statista-dossier/ (2021).
  13. Hölzel, M. & de Vries, W. T. Digitization as a Driver fur Rural Development—An Indicative Description of German Coworking Space Users. Land 10, 326 (2021).
  14. Rischkowsky, F. & Straßer, S. Smarte Öffentliche Mobilität in Stadt und Region. in Smart Region 353–373 (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-29726-8_19.
  15. Xu, X., Ou, J., Liu, P., Liu, X. & Zhang, H. Investigating the impacts of three-dimensional spatial structures on CO2 emissions at the urban scale. Science of The Total Environment 762, 143096 (2021).
  16. Zhang, R., Matsushima, K. & Kobayashi, K. Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Policy 74, 32–40 (2018).
  17. Wang, S.-H., Huang, S.-L. & Huang, P.-J. Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landscape and Urban Planning 169, 22–36 (2018).
  18. Destatis Statistisches Bundesamt. Umwelt, Energie und Mobilität. in Datenreport 2021 (2021).
  1. Ercan, T., Onat, N. C., Tatari, O. & Mathias, J.-D. Public transportation adoption requires a paradigm shift in urban development structure. Journal of Cleaner Production 142, 1789–1799 (2017).
  2. Nguyen-Phuoc, D. Q., Currie, G., de Gruyter, C. & Young, W. Congestion relief and public transport: An enhanced method using disaggregate mode shift evidence. Case Studies on Transport Policy 6, 518–528 (2018).
  3. Umweltbundesamt. Vergleich der durchschnittlichen Emissionen einzelner Verkehrsmittel im Personenverkehr – Bezugsjahr 2019. https://www.umweltbundesamt.de/bild/vergleich-der-durchschnittlichen-emissionen-0 (2019).
  4. Smith, G., Sochor, J. & Karlsson, I. C. M. Mobility as a Service: Development scenarios and implications for public transport. Research in Transportation Economics 69, 592–599 (2018).
  5. Semenescu, A., Gavreliuc, A. & Sârbescu, P. 30 Years of soft interventions to reduce car use – A systematic review and meta-analysis. Transportation Research Part D: Transport and Environment 85, 102397 (2020).
  6. Virág, D. et al. The stock-flow-service nexus of personal mobility in an urban context: Vienna, Austria. Environmental Development 100628 (2021) doi:10.1016/j.envdev.2021.100628.
  7. Zografos, C., Klause, K. A., Connolly, J. J. T. & Anguelovski, I. The everyday politics of urban transformational adaptation: Struggles for authority and the Barcelona superblock project. Cities 99, 102613 (2020).
  8. López, I., Ortega, J. & Pardo, M. Mobility Infrastructures in Cities and Climate Change: An Analysis Through the Superblocks in Barcelona. Atmosphere 11, 410 (2020).
  9. Palenzuela, S. R. Superblocks Base of a New Model of Mobility and Public Space. Barcelona as an Example. in International Encyclopedia of Transportation 249–257 (Elsevier, 2021). doi:10.1016/B978-0-08-102671-7.10709-2.
  10. Zwick, F., Kuehnel, N., Moeckel, R. & Axhausen, K. W. Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise. Transportation Research Part D: Transport and Environment 90, 102673 (2021).
  11. barcelona.de. Barcelona wird super dank Superblocks! https://www.barcelona.de/de/barcelona-superblocks.html (2021).
  12. Kolbe, K. Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transportation. Transport Policy 80, 1–11 (2019).
  13. Emissions Gap Report 2020. (2020).
  14. Tenkanen, H. & Toivonen, T. Longitudinal spatial dataset on travel times and distances by different travel modes in Helsinki Region. Scientific Data 7, 77 (2020).
  15. Bianchi Piccinini, G. F., Moretto, C., Zhou, H. & Itoh, M. Influence of oncoming traffic on drivers’ overtaking of cyclists. Transportation Research Part F: Traffic Psychology and Behaviour 59, 378–388 (2018).
  16. Kaniok, D. Straßenbenutzungsgebühren zur Verhaltenssteuerung. in Framing im Kontext von Straßenbenutzungsgebühren 9–48 (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-33302-7_2.
  17. Alsaleh, R., Hussein, M. & Sayed, T. Microscopic behavioural analysis of cyclist and pedestrian interactions in shared spaces. Canadian Journal of Civil Engineering 47, 50–62 (2020).
  18. Mecheri, S., Rosey, F. & Lobjois, R. Manipulating constraints on driver-cyclist interactions in a fixed travel space: Effects of road configuration on drivers’ overtaking behavior. Safety Science 123, 104570 (2020).
  19. Hollingsworth, J., Copeland, B. & Johnson, J. X. Are e-scooters polluters? The environmental impacts of shared dockless electric scooters. Environmental Research Letters 14, 084031 (2019).
  20. 6t-bureau de recherche. Uses and Users of Free-Floating Electric Scooters in France. (2019).
  21. The Nunatak Group. New Urban Mobility. (2020).
  22. Cruz, R. et al. Introducing new criteria to support cycling navigation and infrastructure planning in flat and hilly cities. Transportation Research Procedia 47, 75–82 (2020).
  23. Boulange, C. et al. Examining associations between urban design attributes and transport mode choice for walking, cycling, public transport and private motor vehicle trips. Journal of Transport & Health 6, 155–166 (2017).
  24. Nielsen, T. A. & Haustein, S. Behavioural effects of a health-related cycling campaign in Denmark: Evidence from the national travel survey and an online survey accompanying the campaign. Journal of Transport & Health 12, 152–163 (2019).
  25. Verkehrswende Köln. Modal Split. (2019).
  26. Astegiano, P., Fermi, F. & Martino, A. Investigating the impact of e-bikes on modal share and greenhouse emissions: a system dynamic approach. Transportation Research Procedia 37, 163–170 (2019).
  27. Hirschhorn, F., van de Velde, D., Veeneman, W. & ten Heuvelhof, E. The governance of attractive public transport: Informal institutions, institutional entrepreneurs, and problem-solving know-how in Oslo and Amsterdam. Research in Transportation Economics 83, 100829 (2020).
  28. Expertise „Vorzeitige Gestaltung des Zukunftsprozesses Masterplan Mobilität Münster 2035+“ – Masterplan für die Gestaltung nachhaltiger und emissionsfreier Mobilität im Rahmen des Förderprogramms „Fonds nachhaltige Mobilität für die Stadt“ des BMVI . (2018).
  29. Tiemann, M., Avantario, V. & Kress, T. Radfahrende schützen – Klimaschutz stärken: Sichere und attraktive Wege für mehr Radverkehr in Städten. (2018).
  30. Umweltbundesamt. Radverkehr: Vorteile des Fahrradfahrens. https://www.umweltbundesamt.de/themen/verkehr-laerm/nachhaltige-mobilitaet/radverkehr#vorteile-des-fahrradfahrens (2021).
  31. Lienhop, M. et al. Pedelection: Verlagerungs- und Klimaeffekte durch Pedelec-Nutzung im Individualverkehr – Endbericht. (2015).
  32. Maizlish, N., Linesch, N. J. & Woodcock, J. Health and greenhouse gas mitigation benefits of ambitious expansion of cycling, walking, and transit in California. Journal of Transport & Health 6, 490–500 (2017).
  33. Espinosa Valderrama, M., Cadena Monroy, Á. I. & Behrentz, E. Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector. Energy Policy 124, 111–122 (2019).
  1. Ritz, J. Die Mobilitätswende. in Mobilitätswende – autonome Autos erobern unsere Straßen 229–232 (Springer Fachmedien Wiesbaden, 2018). doi:10.1007/978-3-658-20953-7_15.
  2. Mokros, A., Demel, P., Knost, F., Münz, M. & Beidl, C. Synthetic, regenerative fuels (reFuels) as enabler for climate neutral mobility and transport. in 399–403 (2020). doi:10.1007/978-3-658-30500-0_27.
  3. König, A., Ulonska, K., Mitsos, A. & Viell, J. Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity. Energy & Fuels 33, 1659–1672 (2019).
  4. Linzenich, A., Arning, K., Bongartz, D., Mitsos, A. & Ziefle, M. What fuels the adoption of alternative fuels? Examining preferences of German car drivers for fuel innovations. Applied Energy 249, 222–236 (2019).
  5. Benajes, J., García, A., Monsalve-Serrano, J. & Martínez-Boggio, S. Potential of using OMEx as substitute of diesel in the dual-fuel combustion mode to reduce the global CO2 emissions. Transportation Engineering 1, 100001 (2020).
  6. Timmerberg, S. & Kaltschmitt, M. Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs. Applied Energy 237, 795–809 (2019).
  7. Dessal, C. et al. Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution. Journal of Catalysis 375, 155–163 (2019).
  8. Yugo, M. & Soler, A. A look into the role of e-fuels in the transport system in Europe (2030–2050). Concawe Review 28, (2019).
  9. Artz, J. et al. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical Reviews 118, 434–504 (2018).
  10. Global Energy Solutions. Haru Oni – ein Blueprint für die internationale Produktion von eFuels? https://global-energy-solutions.org/2021/03/02/haru-oni-ein-blueprint-fuer-die-internationale-produktion-von-efuels/ (2021).
  11. European Commission. Weekly Oil Bulletin. https://ec.europa.eu/energy/data-analysis/weekly-oil-bulletin_en (2021).
  12. Ramirez, A., Sarathy, S. M. & Gascon, J. CO2 Derived E-Fuels: Research Trends, Misconceptions, and Future Directions. Trends in Chemistry 2, 785–795 (2020).
  13. Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change 9, 463–466 (2019).
  14. Shi, X., Huo, X., Esan, O. C., An, L. & Zhao, T. S. Performance characteristics of a liquid e-fuel cell. Applied Energy 297, 117145 (2021).
  15. Arutyunov, V. S. & Lisichkin, G. v. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chemical Reviews 86, 777–804 (2017).
  16. Holmberg, K. & Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribology International 135, 389–396 (2019).
  17. Gelmanova, Z. S. et al. Electric cars. Advantages and disadvantages. Journal of Physics: Conference Series 1015, 052029 (2018).
  18. Wilberforce, T. et al. Developments of electric cars and fuel cell hydrogen electric cars. International Journal of Hydrogen Energy 42, 25695–25734 (2017).
  19. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability 3, 437–447 (2020).
  20. Emilsson, E. & Dahlöf, L. Lithium-Ion Vehicle Battery Production: Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling. (2019).
  21. Ambrose, H., Kendall, A., Lozano, M., Wachche, S. & Fulton, L. Trends in life cycle greenhouse gas emissions of future light duty electric vehicles. Transportation Research Part D: Transport and Environment 81, 102287 (2020).
  22. Heyne, S., Bokinge, P. & Nyström, I. Global production of bio-methane and synthetic fuels – overview. (2019).
  23. Yilmaz, N. & Atmanli, A. Sustainable alternative fuels in aviation. Energy 140, 1378–1386 (2017).
  24. Patterson, B. D. et al. Renewable CO2 recycling and synthetic fuel production in a marine environment. Proceedings of the National Academy of Sciences 116, 12212–12219 (2019).
  25. di Lucia, L., Sevigné‐Itoiz, E., Peterson, S., Bauen, A. & Slade, R. Project level assessment of indirect land use changes arising from biofuel production. GCB Bioenergy 11, 1361–1375 (2019).
  26. Bjerkan, K. Y., Bjørge, N. M. & Babri, S. Transforming socio-technical configurations through creative destruction: Local policy, electric vehicle diffusion, and city governance in Norway. Energy Research & Social Science 82, 102294 (2021).
  27. Morfeldt, J., Davidsson Kurland, S. & Johansson, D. J. A. Carbon footprint impacts of banning cars with internal combustion engines. Transportation Research Part D: Transport and Environment 95, 102807 (2021).
  1. Wasserstoff und Brennstoffzelle. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-37415-9.
  2. The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogen (2019).
  3. Dawood, F., Anda, M. & Shafiullah, G. M. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45, 3847–3869 (2020).
  4. Howarth, R. W. & Jacobson, M. Z. How green is blue hydrogen? Energy Science & Engineering 9, 1676–1687 (2021).
  5. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  6. Bukold, S. Blauer Wasserstoff, Perpektiven und Grenzen eines neuen Technologiepfades. https://green-planet-energy.de/fileadmin/docs/publikationen/Studien/blauer-wasserstoff-studie-2020.pdf (2020).
  7. Noussan, M., Raimondi, P. P., Scita, R. & Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 13, 298 (2020).
  8. Walsh, S. D. C. et al. Evaluating the economic fairways for hydrogen production in Australia. International Journal of Hydrogen Energy 46, 35985–35996 (2021).
  9. Oliveira, A. M., Beswick, R. R. & Yan, Y. A green hydrogen economy for a renewable energy society. Current Opinion in Chemical Engineering 33, 100701 (2021).
  10. Velazquez Abad, A. & Dodds, P. E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 138, 111300 (2020).
  11. The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogen (2019).
  12. Revankar, S. T. Chapter Four – Nuclear Hydrogen Production. in Storage and Hybridization of Nuclear Energy (eds. Bindra, H. & Revankar, S.) 49–117 (Academic Press, 2019). doi:https://doi.org/10.1016/B978-0-12-813975-2.00004-1.
  13. Projected Costs of Generating Electricity 2020. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (2020).
  14. Komarnicki, P., Lombardi, P. & Styczynski, Z. A. Zukünftige Energiesysteme. in Elektrische Energiespeichersysteme 1–40 (Springer Berlin Heidelberg, 2021). doi:10.1007/978-3-662-62802-7_1.
  15. Menéndez, R. P., Martín, A. P., Varela-Candamio, L. & García-Álvarez, M.-T. AN ENHANCED TECHNO-ECONOMIC ANALYSIS OF LCOE: PUBLIC INCENTIVES VS PRIVATE INVESTMENT. Technological and Economic Development of Economy 27, 1–23 (2020).
  16. Züttel, A., Remhof, A., Borgschulte, A. & Friedrichs, O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 3329–3342 (2010).
  17. Gelmanova, Z. S. et al. Electric cars. Advantages and disadvantages. Journal of Physics: Conference Series 1015, 052029 (2018).
  18. Bongartz, D. et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Applied Energy 231, 757–767 (2018).
  19. MTZ – Motortechnische Zeitschrift 81, 40–43 (2020).
  20. Lee, D.-Y., Elgowainy, A., Kotz, A., Vijayagopal, R. & Marcinkoski, J. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. Journal of Power Sources 393, 217–229 (2018).
  21. Kurtz, J., Sprik, S. & Bradley, T. H. Review of transportation hydrogen infrastructure performance and reliability. International Journal of Hydrogen Energy 44, 12010–12023 (2019).
  1. Tober, W. Praxisbericht Elektromobilität und Verbrennungsmotor. (Springer Fachmedien Wiesbaden, 2016). doi:10.1007/978-3-658-13602-4.
  2. Züttel, A., Remhof, A., Borgschulte, A. & Friedrichs, O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 3329–3342 (2010).
  3. Gelmanova, Z. S. et al. Electric cars. Advantages and disadvantages. Journal of Physics: Conference Series 1015, 052029 (2018).
  4. Bongartz, D. et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Applied Energy 231, 757–767 (2018).
  5. Holmberg, K. & Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribology International 135, 389–396 (2019).
  6. Kawamoto, R. et al. Estimation of CO2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA. Sustainability 11, 2690 (2019).
  7. Kallitsis, E., Korre, A., Kelsall, G., Kupfersberger, M. & Nie, Z. Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries. Journal of Cleaner Production 254, 120067 (2020).
  8. Hoekstra, A. The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule 3, 1412–1414 (2019).
  9. Wietschel, M., Kühnbach, M. & Rüdiger, D. Die aktuelle Treibhausgasemissionsbilanz von Elektrofahrzeugen  in Deutschland. Working Paper Sustainability and Innovation 2, (2019).
  10. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability 3, 437–447 (2020).
  11. Agora Verkehrswende. Klimabilanz von Elektroautos. Einflussfaktoren und Verbesserungspotenzial. (2019).
  12. Al-Rawashdeh, H. Design of Solar Photovoltaic for Electric Vehicles Charging Unit. (2019).
  13. Agora Verkehrswende. Klimabilanz von Elektroautos. Einflussfaktoren und Verbesserungspotenzial. (2019).
  14. Emilsson, E. & Dahlöf, L. Lithium-Ion Vehicle Battery Production: Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling. (2019).
  15. Element Energy. Electric Cars: Calculating the Total Cost of Ownership for Consumers. (2021).
  16. Kords, M. Absatz von Elektroautos weltweit bis 2020. Statista https://de-statista-com.zu.idm.oclc.org/statistik/daten/studie/406683/umfrage/anzahl-der-verkaeufe-von-elektroautos-weltweit-prognose/ (2021).
  17. Kords, M. Pkw-Produktion weltweit bis 2020. Statista https://de-statista-com.zu.idm.oclc.org/statistik/daten/studie/159780/umfrage/weltweit-jaehrlich-hergestellte-pkw/ (2021).
  18. Compostella, J., Fulton, L. M., de Kleine, R., Kim, H. C. & Wallington, T. J. Near- (2020) and long-term (2030–2035) costs of automated, electrified, and shared mobility in the United States. Transport Policy 85, 54–66 (2020).
  19. Fridstrøm, L. & Østli, V. Direct and cross price elasticities of demand for gasoline, diesel, hybrid and battery electric cars: the case of Norway. European Transport Research Review 13, 3 (2021).
  20. Wang, S. et al. Regulating Fast Anionic Redox for High-Voltage Aqueous Hydrogen-Ion-based Energy Storage. Angewandte Chemie 131, 211–216 (2019).
  21. Züttel, A., Remhof, A., Borgschulte, A. & Friedrichs, O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 3329–3342 (2010).
  22. Zarazua de Rubens, G., Noel, L., Kester, J. & Sovacool, B. K. The market case for electric mobility: Investigating electric vehicle business models for mass adoption. Energy 194, 116841 (2020).
  23. Kester, J., Sovacool, B. K., Noel, L. & Zarazua de Rubens, G. Between hope, hype, and hell: Electric mobility and the interplay of fear and desire in sustainability transitions. Environmental Innovation and Societal Transitions 35, 88–102 (2020).
  24. Petrauskiene, K. et al. Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions. Sustainability 12, 2935 (2020).
  25. Bartolini, A., Comodi, G., Salvi, D. & Østergaard, P. A. Renewables self-consumption potential in districts with high penetration of electric vehicles. Energy 213, 118653 (2020).
  26. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  1. Fraunhofer Institut für System- und Innovationsforschung ISI. Batterien für Elektroautos: Faktencheck und Handlungsbedarf. (2020).
  2. Noel, L., Zarazua de Rubens, G. & Sovacool, B. K. Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark. Energy 153, 628–637 (2018).
  3. Mittelviefhaus, M., Pareschi, G., Allan, J., Georges, G. & Boulouchos, K. Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation. Applied Energy 301, 117445 (2021).
  4. Hildermeier, J. et al. Smart EV Charging: A Global Review of Promising Practices. World Electric Vehicle Journal 10, 80 (2019).
  5. Amditis, A. et al. Energy management optimization within the Electric Mobility system. in 2017 6th International Conference on Clean Electrical Power (ICCEP) 110–116 (IEEE, 2017). doi:10.1109/ICCEP.2017.8004800.
  6. Nobis, C. & Kuhnimhof, T. Mobilität in Deutschland – MiD Ergebnisbericht. (2018).
  7. Gelmanova, Z. S. et al. Electric cars. Advantages and disadvantages. Journal of Physics: Conference Series 1015, (2018).
  8. Patt, A., Aplyn, D., Weyrich, P. & van Vliet, O. Availability of private charging infrastructure influences readiness to buy electric cars. Transportation Research Part A: Policy and Practice 125, 1–7 (2019).
  9. Gómez Vilchez, J. J., Jochem, P. & Fichtner, W. Interlinking major markets to explore electric car uptake. Energy Policy 144, 111588 (2020).
  10. Hsieh, I.-Y. L., Pan, M. S. & Green, W. H. Transition to electric vehicles in China: Implications for private motorization rate and battery market. Energy Policy 144, 111654 (2020).
  11. Nobis, C. & Kuhnimhof, T. Mobilität in Deutschland – MiD Ergebnisbericht. (2018).
  12. National Household Travel Survey (NHTS). Popular Vehicle Trips Statistics. https://nhts.ornl.gov/vehicle-trips.
  13. Bobeth, S. & Matthies, E. New opportunities for electric car adoption: the case of range myths, new forms of subsidies, and social norms. Energy Efficiency 11, 1763–1782 (2018).
  14. Smith, G., Sochor, J. & Karlsson, I. C. M. Mobility as a Service: Development scenarios and implications for public transport. Research in Transportation Economics 69, 592–599 (2018).
  15. Hu, X., Xu, L., Lin, X. & Pecht, M. Battery Lifetime Prognostics. Joule 4, 310–346 (2020).
  16. Steinbuch, M. Tesla Model S battery degradation data. https://maartensteinbuch.com/2015/01/24/tesla-model-s-battery-degradation-data/ (2015).
  17. Elektroauto-Batterie: Lebensdauer, Garantie, Reparatur. https://www.adac.de/rund-ums-fahrzeug/elektromobilitaet/info/elektroauto-batterie/ (2021).
  18. Mercedes-Benz. Gibt es eine Garantie auf die Batterie? https://www.mercedes-benz.de/vans/de/sprinter/e-sprinter-panel-van/faq/faq-service-purchase/faq-question-5.
  19. Gewährleistungen und Anschlussgarantien. https://www.bmw.de/de/topics/neuwagen/gewaehrleistung.html.
  20. Richter, M. A., Hess, J., Baur, C. & Stern, R. Exploring the Financial Implications of Operating a Shared Autonomous Electric Vehicle Fleet in Zurich. Journal of Urban Mobility 1, 100001 (2021).
  21. Sulzer, V. et al. The challenge and opportunity of battery lifetime prediction from field data. Joule 5, 1934–1955 (2021).
  22. Glücker, P. et al. Prolongation of Battery Lifetime for Electric Buses through Flywheel Integration. Energies 14, 899 (2021).
  23. Martinez-Laserna, E. et al. Technical Viability of Battery Second Life: A Study From the Ageing Perspective. IEEE Transactions on Industry Applications 54, 2703–2713 (2018).
  24. Song, Z. et al. Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios. Applied Energy 251, 113411 (2019).
  25. Després, J. et al. Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis. Energy Economics 64, 638–650 (2017).
  26. Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nature Sustainability 2, 148–156 (2019).
  27. Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).
  28. Huang, B., Pan, Z., Su, X. & An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources 399, 274–286 (2018).
  29. Thompson, D. L. et al. The importance of design in lithium ion battery recycling – a critical review. Green Chemistry 22, 7585–7603 (2020).
  30. Lv, W. et al. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 6, 1504–1521 (2018).
  1. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  2. Buchert, M., Dolega, P. & Degreif, S. Gigafactories für Lithium-Ionen-Zellen – Rohstoffbedarfe für die globale Elektromobilität bis 2050. (2019).
  3. S. Geological Survey. Mineral Commodity Summaries. (2021).
  4. Fraunhofer Institut für System- und Innovationsforschung ISI. Batterien für Elektroautos: Faktencheck und Handlungsbedarf. (2020).
  5. Pehlken, A., Albach, S. & Vogt, T. Is there a resource constraint related to lithium ion batteries in cars? The International Journal of Life Cycle Assessment 22, 40–53 (2017).
  6. Mancini, L., Eslava, N. A., Traverso, M. & Mathieux, F. Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study. Resources Policy 71, 102015 (2021).
  7. S. Geological Survey. Mineral Commodity Summaries. (2021).
  8. Bundesanstalt für Geowissenschaften und Rohstoff. Analyse des artisanalen Kupfer-Kobalt-Sektors in den Provinzen Haut-Katanga und Lualaba in der Demokratischen Republik Kongo. (2019).
  9. Vetter, S. Aktuelle Entwicklung und Akteurslandschaft im kongolesischen Kleinbergbausektor. in DERA Industrieworkshop zur Verfügbarkeit von Kobalt für den Industriestandort Deutschland (2018).
  10. Scheele, F., de Haan, E. & Kiezebrink, V. Cobalt blues: Environmental pollution and human rights violations in Katanga’s copper and cobalt mines. (2016).
  11. Banza Lubaba Nkulu, C. et al. Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustainability 1, 495–504 (2018).
  12. Tsurukawa, N., Prakash, S. & Manhart, A. Social impacts of artisanal cobalt mining in Katanga, Democratic Republic of Congo. (2011).
  13. Rutovitz, J. et al. Certification and LCA of Australian Battery Materials – Drivers and Options. (2020).
  14. Sovacool, B. K. When subterranean slavery supports sustainability transitions? power, patriarchy, and child labor in artisanal Congolese cobalt mining. The Extractive Industries and Society 8, 271–293 (2021).
  15. Deberdt, R. & Billon, P. le. Conflict minerals and battery materials supply chains: A mapping review of responsible sourcing initiatives. The Extractive Industries and Society 100935 (2021) doi:10.1016/j.exis.2021.100935.
  16. Langer, M. Strukturwandel in der Lausitz: Der Wandel der gesellschaftlichen Naturverhältnisse und die Bedeutung für Sorben/Wenden. (2019).
  17. Barandiarán, J. Lithium and development imaginaries in Chile, Argentina and Bolivia. World Development 113, 381–391 (2019).
  18. Wanger, T. C. The Lithium future-resources, recycling, and the environment. Conservation Letters 4, 202–206 (2011).
  19. Stamp, A., Lang, D. J. & Wäger, P. A. Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production. Journal of Cleaner Production 23, 104–112 (2012).
  20. Jiang, S. et al. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. Journal of Environmental Management 262, 110253 (2020).
  21. Altimiras, P. Lithium mit niedrigem CO2-Fußabdruck. Umweltmagazin 50, (2020).
  22. Dugamin, E. J. M. et al. Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Scientific Reports 11, 21091 (2021).
  23. Jenu, S. et al. Reducing the climate change impacts of lithium-ion batteries by their cautious management through integration of stress factors and life cycle assessment. Journal of Energy Storage 27, 101023 (2020).
  24. AR5 Synthesis Report: Climate Change 2014. (2014).
  25. International Energy Agency (IEA). Global EV Outlook 2019. (2019).
  26. Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of The Total Environment 639, 1188–1204 (2018).
  27. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  28. Emissions Gap Report 2020. (2020).
  1. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  2. Speirs, J. et al. Natural gas fuel and greenhouse gas emissions in trucks and ships. Progress in Energy 2, 012002 (2020).
  3. Weltweites Frachtvolumen im Vergleich der Jahre 2010 und 2050 nach Verkehrsträgern. https://de.statista.com/statistik/daten/studie/482955/umfrage/frachtvolumen-weltweit-nach-verkehrstraegern/ (2021).
  4. Teske, S., Pregger, T., Simon, S. & Naegler, T. High renewable energy penetration scenarios and their implications for urban energy and transport systems. Current Opinion in Environmental Sustainability 30, 89–102 (2018).
  5. Ein neuer Truck für eine neue Ära: Mercedes-Benz eActros feiert Weltpremiere. https://www.daimler.com/produkte/lkw/mercedes-benz/eactros.html (2021).
  6. Zeilinger, M. & Wohlfarth, E. Locally Emission-free and Quiet Freight Transportation with the Mercedes-Benz eActros. MTZ worldwide 79, 30–35 (2018).
  7. Lee, D.-Y., Thomas, V. M. & Brown, M. A. Electric Urban Delivery Trucks: Energy Use, Greenhouse Gas Emissions, and Cost-Effectiveness. Environmental Science & Technology 47, 8022–8030 (2013).
  8. Plötz, P. et al. Alternative Antriebe und Kraftstoffe im Straßengüterverkehr – Handlungsempfehlungen für Deutschland. (2018).
  9. International Energy Agency (IEA). Trucks and Buses. (2021).
  10. Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. Ü. & Kaschub, T. Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy 130, 32–40 (2019).
  11. Nykvist, B. & Olsson, O. The feasibility of heavy battery electric trucks. Joule 5, 901–913 (2021).
  12. Emonts, B. et al. Flexible sector coupling with hydrogen: A climate-friendly fuel supply for road transport. International Journal of Hydrogen Energy 44, 12918–12930 (2019).
  13. Zhang, L., Chen, F., Ma, X. & Pan, X. Fuel Economy in Truck Platooning: A Literature Overview and Directions for Future Research. Journal of Advanced Transportation 2020, 1–10 (2020).
  14. Kast, J., Morrison, G., Gangloff, J. J., Vijayagopal, R. & Marcinkoski, J. Designing hydrogen fuel cell electric trucks in a diverse medium and heavy duty market. Research in Transportation Economics 70, 139–147 (2018).
  15. Rose, P., Wietschel, M. & Gnann, T. Wie könnte ein Tankstellenaufbau für Brennstoffzellen-Lkw in Deutschland aussehen? Working Paper Sustainability and Innovation 9, (2020).
  16. Wietschel, M., Gnann, T., Plötz, P. & Doll, C. Electric Trolley Trucks – A Techno-Economic Assessment for Germany. World Electric Vehicle Journal 10, 86 (2019).
  17. Baek, D., Chen, Y., Chang, N., Macii, E. & Poncino, M. Optimal Battery Sizing for Electric Truck Delivery. Energies 13, 709 (2020).
  18. Tong, F., Jenn, A., Wolfson, D., Scown, C. D. & Auffhammer, M. Health and Climate Impacts from Long-Haul Truck Electrification. Environmental Science & Technology 55, 8514–8523 (2021).
  19. International Energy Agency (IEA). Global EV Outlook 2021. (2021).
  20. Sui, J. et al. Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization. Applied Energy 276, 115409 (2020).
  21. Burre, J., Bongartz, D., Brée, L., Roh, K. & Mitsos, A. Power‐to‐X: Between Electricity Storage, e‐Production, and Demand Side Management. Chemie Ingenieur Technik 92, 74–84 (2020).
  22. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 12, 463–491 (2019).
  23. Deloitte China. Fueling the Future of Mobility Hydrogen and fuel cell solutions for transportation. (2020).
  24. Nykvist, B. & Olsson, O. The feasibility of heavy battery electric trucks. Joule 5, 901–913 (2021).
  25. Whiston, M. M. et al. Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. Proceedings of the National Academy of Sciences 116, 4899–4904 (2019).
  26. Nykvist, B. & Olsson, O. The feasibility of heavy battery electric trucks. Joule 5, 901–913 (2021).
  27. Suthold, R. & Krusche, M. COVID-19 und die Auswirkungen auf die Mobilität – Eine Analyse mit Echtzeitdaten. in Mobilität nach COVID-19 51–64 (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-33308-9_3.
  28. Nadel, S. & Junga, E. Electrifying Trucks: From Delivery Vans to Buses to 18-Wheelers. (2020).
  1. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  2. Graver, B., Zhang, K. & Rutherford, D. CO2 emissions from commercial  aviation, 2018. (2019).
  3. Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment 244, 117834 (2021).
  4. Xue, D., Ng, K. K. H. & Hsu, L.-T. Multi-Objective Flight Altitude Decision Considering Contrails, Fuel Consumption and Flight Time. Sustainability 12, 6253 (2020).
  5. Gössling, S. & Humpe, A. The global scale, distribution and growth of aviation: Implications for climate change. Global Environmental Change 65, 102194 (2020).
  6. Scheelhaase, J. D. How to regulate aviation’s full climate impact as intended by the EU council from 2020 onwards. Journal of Air Transport Management 75, 68–74 (2019).
  7. CO2-Rechner des Umweltbundesamts. https://uba.co2-rechner.de/de_DE/.
  8. Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions?breakBy=sector&end_year=2018&sectors=&start_year=1990 (2021).
  9. International Aircraft Transport Association (IATA). Aircraft Technology Roadmap to 2050.
  10. Cumpsty, N., Mavris, D. & Kirby, M. Aviation and the Environment: Outlook. in Aviation and Environmental Outlook 24–37 (2019).
  11. Beck, N. et al. Drag Reduction by Laminar Flow Control. Energies 11, 252 (2018).
  12. Aviation. https://www.iea.org/reports/aviation (2021).
  13. ITF Transport Outlook 2021. (2021) doi:10.1787/16826a30-en.
  14. Kandaramath Hari, T., Yaakob, Z. & Binitha, N. N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews 42, 1234–1244 (2015).
  15. Srivastava, N. et al. Applications of fungal cellulases in biofuel production: Advances and limitations. Renewable and Sustainable Energy Reviews 82, 2379–2386 (2018).
  16. Taufiqurrahmi, N., Mohamed, A. R. & Bhatia, S. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: Process optimization studies. Bioresource Technology 102, 10686–10694 (2011).
  17. German Aerospace Center. DEPA 2050: Development Pathways for Aviation up to 2050  – Final Report. (2021).
  18. European Commission. Proposal for a regulation of the European Parliament and of the Council on ensuring a level playing field for sustainable air transport. (2021).
  19. Europäische Kommission. Umsetzung des europäischen Grünen Deals.
  20. Jiang, C. & Yang, H. Carbon tax or sustainable aviation fuel quota. Energy Economics 103, 105570 (2021).
  21. González, R. & Hosoda, E. B. Environmental impact of aircraft emissions and aviation fuel tax in Japan. Journal of Air Transport Management 57, 234–240 (2016).
  22. Deutsches Zentrum für Luft- und Raumfahrt (DLR). Sig­nif­i­cant­ly low­er cli­mate im­pact of con­trails when us­ing sus­tain­able fu­els. (2021).
  23. Dahlmann, K. et al. Climate-Compatible Air Transport System – Climate Impact Mitigation Potential for Actual and Future Aircraft. Aerospace 3, 38 (2016).
  24. Voigt, C. et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Communications Earth & Environment 2, 114 (2021).
  25. Frömming, C. et al. Influence of the actual weather situation on non-CO2 aviation climate effects: The REACT4C Climate Change Functions. Atmospheric Chemistry and Physics Discussions (2020).
  26. Grewe, V., Matthes, S. & Dahlmann, K. The contribution of aviation NO x emissions to climate change: are we ignoring methodological flaws? Environmental Research Letters 14, 121003 (2019).
  27. Integration of Non-CO2 Effects of Aviation in the EU ETS and under CORSIA. (2019).
  28. Umweltschonender Luftverkehr: lokal – national – international. (2019).
  29. Yu, K. et al. Effects of railway speed on aviation demand and CO2 emissions in China. Transportation Research Part D: Transport and Environment 94, 102772 (2021).
  30. Scheelhaase, J. & Maertens, S. How to improve the global ‘Carbon Offsetting and Reduction Scheme for International Aviation’ (CORSIA)? Transportation Research Procedia 51, 108–117 (2020).
  31. Maertens, S., Grimme, W. & Scheelhaase, J. ICAO’s new CORSIA scheme at a glance – a milestone towards greener aviation? in Aviation and Climate Change (2020).
  32. Öko-Institut e.V. How additional is the Clean Development Mechanism? (2016).
  33. Maertens, S. & Grimme, W. CORSIA – Environmental effects and competitive implications. in European Transport Conference (ETC) 2019 (2019).
  34. Niklaß, M., Maertens, S. & Scheelhaase, J. Verifiability of Reporting Aviation’s non-CO2 Effects in EU-ETS and CORSIA. (2019).
  35. Öko-Institut e.V. How additional is the Clean Development Mechanism? (2016).
  36. EUROCONTROL Data Snapshot #4 on CO₂ emissions by flight distance. (2021).
  37. Langford, J. S. & Hall, D. K. Electrified Aircraft Propulsion. (2020).
  1. Fourth Greenhouse Gas Study 2020. https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx (2021).
  2. ITF Transport Outlook 2021. (OECD, 2021). doi:10.1787/16826a30-en.
  3. Kunze, H. Nachhaltigkeitsbericht Geschäftsjahr 2019. (2019).
  4. Vergleich der durchschnittlichen Emissionen einzelner Verkehrsmittel im Personenverkehr. 2019 https://www.umweltbundesamt.de/bild/vergleich-der-durchschnittlichen-emissionen-0.
  5. Google Maps. Entfernung Moskau Berlin. https://www.google.de/maps/dir/Moskau,+Russland/Berlin/@52.4841918,7.7355972,4z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1s0x46b54afc73d4b0c9:0x3d44d6cc5757cf4c!2m2!1d37.6172999!2d55.755826!1m5!1m1!1s0x47a84e373f035901:0x42120465b5e3b70!2m2!1d13.404954!2d52.5200066!3e0.
  6. Maritime Forecast to 2050. (2018).
  7. Lee, H.-J., Yoo, S.-H. & Huh, S.-Y. Economic benefits of introducing LNG-fuelled ships for imported flour in South Korea. Transportation Research Part D: Transport and Environment 78, 102220 (2020).
  8. 2nd Life Cycle GHG Emission Study on the Use of LNG as Marine Fuel. (2021).
  9. Sonderbericht über 1,5 °C globale Erwärmung (SR1.5). https://www.de-ipcc.de/256.php (2018).
  10. Pavlenko, N., Comer, B., Zhou, Y., Clark, N. & Rutherford, D. The climate implications of using LNG as a marine fuel. www.theicct.org (2020).
  11. Gilbert, A. Q. & Sovacool, B. K. US liquefied natural gas (LNG) exports: Boom or bust for the global climate? Energy 141, 1671–1680 (2017).
  12. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]
  13. Burkov, A. F. & Kuvshinov, G. Y. Study of ships electrification. in 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) 1–6 (2017). doi:10.1109/ICIEAM.2017.8076185.
  14. Maritime Forecast to 2050. (2018).
  15. Ash, N. & Scarbrough, T. Sailing on Solar – Could green ammonia decarbonise international shipping? (2019).
  16. REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on ensuring a level playing field for sustainable air transport. https://ec.europa.eu/info/sites/default/files/refueleu_aviation_-_sustainable_aviation_fuels.pdf (2021).
  17. König, A., Ulonska, K., Mitsos, A. & Viell, J. Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity. Energy & Fuels 33, 1659–1672 (2019).
  18. Jiang, C. & Yang, H. Carbon tax or sustainable aviation fuel quota. Energy Economics 103, 105570 (2021).
  19. Schmitt, T. M. (Why) did Desertec fail? An interim analysis of a large-scale renewable energy infrastructure project from a Social Studies of Technology perspective. Local Environment 23, 747–776 (2018).
  20. Gilbert, P. R. Chapter 6 – Making critical materials valuable: Decarbonization, investment, and “political risk.” in The Material Basis of Energy Transitions (eds. Bleicher, A. & Pehlken, A.) 91–108 (Academic Press, 2020). doi:https://doi.org/10.1016/B978-0-12-819534-5.00006-4.
  21. Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change 11, 384–393 (2021).
  1. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021).
  2. Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 2000-2030. https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030 (2019).
  3. Dominković, D. F., Bačeković, I., Pedersen, A. S. & Krajačić, G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renewable and Sustainable Energy Reviews 82, 1823–1838 (2018).
  4. Jacobson, M. Z. et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 1, 108–121 (2017).
  5. United Nations Environment Programme (2020). Emissions Gap Report 2020 – Executive summary.
  6. ITF Transport Outlook 2021. https://www.oecd-ilibrary.org/transport/itf-transport-outlook-2021_16826a30-en (2021).
  7. Jones, E. C. & Leibowicz, B. D. Contributions of shared autonomous vehicles to climate change mitigation. Transportation Research Part D: Transport and Environment 72, 279–298 (2019).
  8. Harvey, L. D. D. Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060. Applied Energy 212, 663–679 (2018).
  9. Mueller, N. et al. Changing the urban design of cities for health: The superblock model. Environment International 134, 105132 (2020).
  10. Tenkanen, H. & Toivonen, T. Longitudinal spatial dataset on travel times and distances by different travel modes in Helsinki Region. Scientific Data 7, 77 (2020).
  11. Kaniok, D. Straßenbenutzungsgebühren zur Verhaltenssteuerung. in Framing im Kontext von Straßenbenutzungsgebühren 9–48 (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-33302-7_2.
  12. Alimujiang, A. & Jiang, P. Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—A case of Shanghai. Energy for Sustainable Development 55, 181–189 (2020).
  13. Nieuwenhuijsen, M. J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environment International 140, 105661 (2020).
  14. Woods, R. & Masthoff, J. A comparison of car driving, public transport and cycling experiences in three European cities. Transportation Research Part A: Policy and Practice 103, 211–222 (2017).
  15. Züttel, A., Remhof, A., Borgschulte, A. & Friedrichs, O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 3329–3342 (2010).
  16. MTZ – Motortechnische Zeitschrift 81, 40–43 (2020).
  17. Bongartz, D. et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Applied Energy 231, 757–767 (2018).
  18. Holmberg, K. & Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribology International 135, 389–396 (2019).
  19. Gelmanova, Z. S. et al. Electric cars. Advantages and disadvantages. Journal of Physics: Conference Series 1015, 052029 (2018).
  20. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability 3, 437–447 (2020).
  21. Danielis, R., Giansoldati, M. & Rotaris, L. A probabilistic total cost of ownership model to evaluate the current and future prospects of electric cars uptake in Italy. Energy Policy 119, 268–281 (2018).
  22. Méjean, A., Guivarch, C., Lefèvre, J. & Hamdi-Cherif, M. The transition in energy demand sectors to limit global warming to 1.5 °C. Energy Efficiency 12, 441–462 (2019).
  23. ITF Transport Outlook 2021. (OECD, 2021). doi:10.1787/16826a30-en.
  24. König, A., Ulonska, K., Mitsos, A. & Viell, J. Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity. Energy & Fuels 33, 1659–1672 (2019).
  25. REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on ensuring a level playing field for sustainable air transport. https://ec.europa.eu/info/sites/default/files/refueleu_aviation_-_sustainable_aviation_fuels.pdf (2021).
  26. Sharmina, M. et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C. Climate Policy 21, 455–474 (2021).
  27. Voigt, C. et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Communications Earth & Environment 2, 114 (2021).
  28. Kováčik, Ľ., Lusiak, T. & Novák, A. Reducing Emissions from Aviation and Their Impact on Aviation Work in Agriculture. Transportation Research Procedia 55, 220–227 (2021).
  29. Jiang, C. & Yang, H. Carbon tax or sustainable aviation fuel quota. Energy Economics 103, 105570 (2021).
  30. González, R. & Hosoda, E. B. Environmental impact of aircraft emissions and aviation fuel tax in Japan. Journal of Air Transport Management 57, 234–240 (2016).
  31. Wang, L., Xue, X., Zhao, Z. & Wang, Z. The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges. International Journal of Environmental Research and Public Health 15, 1172 (2018).
  32. Cigu, E., Agheorghiesei, D. T., Gavriluță (Vatamanu), A. F. G. & Toader, E. Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries. Sustainability 11, 67 (2018).
  33. Statista Research Department. Prognose zum Frachtvolumen weltweit nach Verkehrsträgern bis 2050. https://de-statista-com.zu.idm.oclc.org/statistik/daten/studie/482955/umfrage/frachtvolumen-weltweit-nach-verkehrstraegern/ (2015).
  34. ITF Transport Outlook 2019. (OECD, 2019). doi:10.1787/transp_outlook-en-2019-en.
  1. Harris, D. R. & Fuller, D. Q. Agriculture: Definition and Overview. in Encyclopedia of Global Archaeology (Springer New York, 2014). doi:10.1007/978-1-4419-0465-2_64.
  2. The World Bank. Population, total. https://data.worldbank.org/indicator/SP.POP.TOTL (2020).
  3. worldometer. Current world population. https://www.worldometers.info/world-population/ (2021).
  4. Dai, A. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change 144, 519–533 (2017).
  5. Lehmann, J., Coumou, D. & Frieler, K. Increased record-breaking precipitation events under global warming. Climatic Change 132, 501–515 (2015).
  6. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change 5, 560–564 (2015).
  7. Ray, D. K. et al. Climate change has likely already affected global food production. PLOS ONE 14, (2019).
  8. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2, 198–209 (2021).
  1. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2, 198–209 (2021).
  2. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  3. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change 9, 66–72 (2019).
  1. FAOSTAT. Data. https://www.fao.org/faostat/en/#data (2021).
  2. FAO. Reducing Enteric Methane for improving food security and livelihoods. https://www.fao.org/in-action/enteric-methane/background/what-is-enteric-methane/en/.
  3. California Environmental Associates. Mitigation opportunities in the agricultural sector – A review of agricultural mitigation for the Climate and Land Use Alliance. (2014).
  4. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. (2014).
  5. Jayanegara, A., Ridla, M., Laconi, E. & Ramli, N. Tannin as a feed additive for mitigating enteric methane emission from livestock: meta-analysis from RUSITEC experiments. IOP Conference Series: Materials Science and Engineering 434, 012108 (2018).
  6. Osterburg, B., Heidecke, C. & Bolte, A. Folgenabschätzung für Maßnahmenoptionen im Bereich Landwirtschaft und landwirtschaftliche Landnutzung, Forstwirtschaft und Holznutzung zur Umsetzung des Klimaschutzplans 2050. Braunschweig : Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei (2020) doi:10.3220/WP1576590038000.
  7. Nawab, A. et al. The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives – A Review. Annals of Animal Science 20, (2020).
  8. Beauchemin, K. A., Ungerfeld, E. M., Eckard, R. J. & Wang, M. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. animal 14, s2–s16 (2020).
  9. Gerber, P. J. et al. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. (2013).
  10. Vellinga, T. v & de Vries, M. Effectiveness of climate change mitigation options considering the amount of meat produced in dairy systems. Agricultural Systems 162, 136–144 (2018).
  1. FAOSTAT. Emissions Totals. https://www.fao.org/faostat/en/#data/GT (2021).
  2. Schweizerische Eidgenossenschaft – Bundesamt für Umwelt BAFU. Landwirtschaft als Luftschadstoffquelle. https://www.bafu.admin.ch/bafu/de/home/themen/luft/fachinformationen/luftschadstoffquellen/landwirtschaft-als-luftschadstoffquelle.html (2021).
  3. Flessa, H. et al. Minderung von Stickstoff – Emissionen aus der Landwirtschaft – Empfehlungen für die Praxis und aktuelle Fragen an die Wissenschaft. https://literatur.thuenen.de/digbib_extern/dn054531.pdf (2014).
  4. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Abridged Report. (2014).
  5. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. (2014).
  6. Gerber, P. J. et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal 7, 220–234 (2013).
  7. Kösler, J. E., Calvo, O. C., Franzaring, J. & Fangmeier, A. Evaluating the ecotoxicity of nitrification inhibitors using terrestrial and aquatic test organisms. Environmental Sciences Europe 31, 91 (2019).
  8. Mohankumar Sajeev, E. P., Winiwarter, W. & Amon, B. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. Journal of Environmental Quality 47, 30–41 (2018).
  9. Hou, Y., Velthof, G. L. & Oenema, O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Global Change Biology 21, 1293–1312 (2015).
  10. Kaupenjohann, M. et al. Gutachten zur Anwendung von Minderungstechniken für Ammoniak durch „Ansäuerung von Gülle“ und deren Wirkungen auf Boden und Umwelt – Abschlussbericht. https://www.ammoniak.ch/files/Downloads/Kaupenjohann_et_al_02663.pdf (2019).
  11. Malomo, G. A., Madugu, A. S. & Bolu, S. A. Sustainable Animal Manure Management Strategies and Practices. in Agricultural Waste and Residues (InTech, 2018). doi:10.5772/intechopen.78645.
  12. de Klein, C. et al. N2O Emissions from managed soils, and CO2 emissions from lime and urea application. in IPCC Guidelines for National Greenhouse Gas Inventories vol. 4 11.1-11.54 (2006).
  13. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  14. FAOSTAT. Data. https://www.fao.org/faostat/en/#data (2021).
  1. Umweltbundesamt. Düngemittel. https://www.umweltbundesamt.de/themen/boden-landwirtschaft/umweltbelastungen-der-landwirtschaft/duengemittel#dungemittel-was-ist-das (2020).
  2. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. (2014).
  3. FAOSTAT. Emissions Totals. https://www.fao.org/faostat/en/#data/GT (2021).
  4. Hirel, B., Tétu, T., Lea, P. J. & Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 3, (2011).
  5. Ju, X.-T. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences 106, (2009).
  6. Ribaud, M. Reducing Agriculture’s Nitrogen Footprint: Are New Policy Approaches Needed? Amber Waves 34–39 (2011) doi:10.22004/ag.econ.121012.
  7. Palm, C. A. et al. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proceedings of the National Academy of Sciences 107, (2010).
  8. Zhang, W. -f. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences 110, (2013).
  9. The Royal Society. Ammonia: zero-carbon fertiliser, fuel and energy store. (2020).
  10. Vereinigung für Allgemeine und Angewandte Mikrobiologie. Mikrobe des Jahres 2015 – Rhizobium. (2015).
  11. Flynn, R. & Idowu, J. Nitrogen Fixation by Legumes. https://aces.nmsu.edu/pubs/_a/A129/ (2015).
  12. Market Research Future. Legumes Market Research Report: Information by Source (Beans, Lentils, Peas and others), Product Type (Whole, Flour, Oil and others), End Use (Household and Commercial [Food Service and Food Processing]) and Region (North America, Europe, Asia-Pacific and Rest of the World) – Forecast till 2027 . https://www.marketresearchfuture.com/reports/legumes-market-8254 (2021).
  13. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change 9, 66–72 (2019).
  14. de Klein, C. et al. N2O Emissions from managed soils, and CO2 emissions from lime and urea application. in IPCC Guidelines for National Greenhouse Gas Inventories vol. 4 11.1-11.54 (2006).
  15. Mueller, N. D. et al. A tradeoff frontier for global nitrogen use and cereal production. Environmental Research Letters 9, 054002 (2014).
  1. Ishfaq, M. et al. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural Water Management 241, 106363 (2020).
  2. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Abridged Report. (2014).
  3. Sahrawat, K. L. Soil Fertility Advantages of Submerged Rice Cropping Systems. Journal of Sustainable Agriculture 31, 5–23 (2008).
  4. Neue, H.-U. Methane Emission from Rice Fields: Wetland rice fields may make a major contribution to global warming. BioScience 43, 466–474 (1993).
  5. Alloway, B. J. Vorgänge in Böden und das Verhalten von Schwermetallen. in Schwermetalle in Böden (Springer Berlin Heidelberg, 1999). doi:10.1007/978-3-642-58384-1_2.
  6. Butterbach-Bahl, K., Papen, H. & Rennenberg, H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell & Environment 20, 1175–1183 (1997).
  7. Aulakh, M. S., Bodenbender, J., Wassmann, R. & Rennenberg, H. Methane Transport Capacity of Rice Plants. II. Variations Among Different Rice Cultivars and Relationship with Morphological Characteristics. Nutrient Cycling in Agroecosystems 58, 367–375 (2000).
  8. Kerdchoechuen, O. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agriculture, Ecosystems & Environment 108, 155–163 (2005).
  9. Win, K. T. et al. Comparison of methanotrophic bacteria, methane oxidation activity, and methane emission in rice fields fertilized with anaerobically digested slurry between a fodder rice and a normal rice variety. Paddy and Water Environment 10, 281–289 (2012).
  10. FAOSTAT. Data. https://www.fao.org/faostat/en/#data (2021).
  11. Mazza, G. et al. Reduction of Global Warming Potential from rice under alternate wetting and drying practice in a sandy soil of northern Italy. Italian Journal of Agrometereology 21, 35–44 (2016).
  12. Takakai, F., Kominami, Y., Ohno, S. & Nagata, O. Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan. -I. Comparison of rice straw and rice straw compost -. Soil Science and Plant Nutrition 66, (2020).
  13. Linquist, B. A. et al. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Global Change Biology 21, 407–417 (2015).
  1. Valin, H. et al. The future of food demand: understanding differences in global economic models. Agricultural Economics 45, 51–67 (2014).
  2. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change 9, 66–72 (2019).
  3. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. (2014).
  4. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
  5. FAOSTAT. Data. https://www.fao.org/faostat/en/#data (2021).
  6. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  1. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2, 198–209 (2021).
  2. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  1. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  2. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
  3. FAO. Reducing Enteric Methane for improving food security and livelihoods. https://www.fao.org/in-action/enteric-methane/background/what-is-enteric-methane/en/.
  4. Food and Agriculture Organization of the United Nations (FAO). Shaping the future of livestock – sustainably, responsibly, efficiently. in The 10th Global Forum for Food and Agriculture (GFFA) (2018).
  5. Mottet, A. et al. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security 14, 1–8 (2017).
  6. Gerber, P. J. et al. Tackling Climate Change Through Livestock- A Global Assessment of Emissions and Mitigation Opportunities. (2013).
  7. Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4. (2014).
  8. Benton, T. G., Bieg, C., Harwatt, H., Pudasaini, R. & Wellesley, L. Food system impacts on biodiversity loss – Three levers for food system transformation in support of nature. (2021).
  9. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, (2019).
  10. Ritchie, H. Half of the world’s habitable land is used for agriculture. https://ourworldindata.org/global-land-for-agriculture (2019).
  1. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  2. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
  3. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. (2014).
  4. https://epub.wupperinst.org/frontdoor/deliver/index/docId/7834/file/ZI19_Ernaehrungssysteme.pdf
  5. https://www.umweltbundesamt.de/bild/vergleich-der-durchschnittlichen-emissionen-0

Your Content Goes Here

  1. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  2. Reinhardt, G., Gärtner, S. & Wagner, T. Ökologische Fußabdrücke von Lebensmitteln und Gerichten in Deutschland. (2020).
  3. Reiter, M. S. & Kockelman, K. M. The problem of cold starts: A closer look at mobile source emissions levels. Transportation Research Part D: Transport and Environment 43, (2016).

  1. Jönsson, E., Linné, T. & McCrow-Young, A. Many Meats and Many Milks? The Ontological Politics of a Proposed Post-animal Revolution. Science as Culture 28, 70–97 (2019).
  2. Rischer, H., Szilvay, G. R. & Oksman-Caldentey, K.-M. Cellular agriculture — industrial biotechnology for food and materials. Current Opinion in Biotechnology 61, 128–134 (2020).
  3. Souza Filho, P. F., Andersson, D., Ferreira, J. A. & Taherzadeh, M. J. Mycoprotein: environmental impact and health aspects. World Journal of Microbiology and Biotechnology 35, 147 (2019).
  4. Kumar, P. et al. Meat analogues: Health promising sustainable meat substitutes. Critical Reviews in Food Science and Nutrition 57, 923–932 (2017).
  5. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  6. Sharif, M. et al. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 531, 735885 (2021).
  7. Mattick, C. S. Cellular agriculture: The coming revolution in food production. Bulletin of the Atomic Scientists 74, 32–35 (2018).
  8. Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nature Sustainability 1, 782–789 (2018).
  9. Halloran, A., Roos, N., Eilenberg, J., Cerutti, A. & Bruun, S. Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development 36, 57 (2016).
  10. Hartmann, C. & Siegricht, M. Insects as food: Perception and acceptance. Findings from current research. Ernaehrungs Umschau international 64, 44–50 (2017).
  11. Hoek, A. C. et al. Replacement of meat by meat substitutes. A survey on person- and product-related factors in consumer acceptance. Appetite 56, 662–673 (2011).
  1. Beacham, A. M., Vickers, L. H. & Monaghan, J. M. Vertical farming: a summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology 94, (2019).
  2. Al-Chalabi, M. Vertical farming: Skyscraper sustainability? Sustainable Cities and Society 18, (2015).
  3. Stein, E. W. The Transformative Environmental Effects Large-Scale Indoor Farming May Have On Air, Water, and Soil. Air, Soil and Water Research 14, (2021).
  4. O’Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z. & Wasson, A. P. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems 174, (2019).
  5. Harris, Z. M. & Kountouris, Y. Vertical Farming as a Game Changer for BECCS Technology Deployment. Sustainability 12, (2020).
  6. Giller, K. E. et al. The future of farming: Who will produce our food? Food Security 13, (2021).
  7. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
  8. Smith, O. M. et al. Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Frontiers in Sustainable Food Systems 3, (2019).
  9. Food and Agriculture Organization of the United Nations (FAO). Agroforestry – Definition. https://www.fao.org/forestry/agroforestry/80338/en/ (2015).
  10. Dickie, A. et al. Strategies for Mitigating  Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. (2014).
  11. IPCC. Climate Change and Land – An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).
  1. Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 3065–3081 (2010).
  2. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste – Extent, Causes and Prevention. (2011).
  3. IPCC. Food Security. in Special Report: Special Report on Climate Change and Land (2019).
  4. Food and Agriculture Organization of the United Nations (FAO). Food Wastage Footprint – Full-cost Accounting – Final Report. (2014).
  5. Food and Agriculture Organization of the United Nations (FAO). Food wastage footprint & Climate Change. (2015).
  6. Lipinski, B. et al. Reducing Food Loss and Waste. (2013).
  7. Godfray, H. C. J. et al. Food Security: The Challenge of Feeding 9 Billion People. Science 327, (2010).
  8. Mitigation opportunities in the agricultural sector – A review of agricultural mitigation for the Climate and Land Use Alliance – Technical annex to “Strategies for Mitigating Climate Change in Agriculture: Recommendations for Philanthropy.” . (2014).
  9. Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nature Climate Change 4, (2014).
  10. Klingshirn, A. et al. Empfehlungen zur Kühllagerung von Lebensmitteln – ein Review. Hauswirtschaft und Wissenschaft 69, (2021).
  1. International Fund for Agricultural Development (IFAD). Ensuring environmental sustainability and building resilience to climate change. https://www.ifad.org/en/climate-and-environment.
  2. IPCC. Climate Change and Land – An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).
  3. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change 9, 66–72 (2019).
  4. Hartmann, C. & Siegrist, M. Consumer perception and behaviour regarding sustainable protein consumption: A systematic review. Trends in Food Science & Technology 61, 11–25 (2017).
  5. Vermeir, I. et al. Environmentally Sustainable Food Consumption: A Review and Research Agenda From a Goal-Directed Perspective. Frontiers in Psychology 11, 1603 (2020).
  6. IPCC. Food Security. in Special Report: Special Report on Climate Change and Land (2019).
  1. Voigt Kai-Ingo. Industrie. https://wirtschaftslexikon.gabler.de/definition/industrie-39688.
  2. IPCC. Industry. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
  3. International Energy Agency (IEA). World Energy Statistics and Balances. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances (2021).
  4. The Future of Petrochemicals -Towards more sustainable plastics and fertilisers. (2018).
  1. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  2. Crippa, M. et al. Fossil CO 2 emissions of all world countries – 2020 Report. (2020). doi:10.2760/143674.
  3. CLIMATEWATCH. Data Explorer. https://www.climatewatchdata.org/data-explorer/historical-emissions?historical-emissions-data-sources=cait&historical-emissions-gases=all-ghg&historical-emissions-regions=All%20Selected&historical-emissions-sectors=total-including-lucf&page=1.
  4. Tracking Industry 2020. (2020).
  1. World Energy Outlook 2019. (2019).
  2. International Energy Agency (IEA). World Energy Statistics and Balances. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances (2021).
  3. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, (2021).
  4. Tracking Industry 2020. (2020).
  5. Guminski, A. et al. Energiewende in der Industrie – Potenziale und Wechselwirkungen mit dem Energiesektor. (2019).
  6. Philibert, C. Renewable Energy for Industry – From green energy to green materials and fuels. (2017).
  7. Johnson, F. X. Industrial Biotechnology and Biomass Utilisation – Prospects and Challenges for the Developing World. (2007).
  8. Energy Technology Perspectives 2020. (2021).
  9. Energy Efficiency 2020. (2020).
  10. Projected Costs of Generating Electricity – 2020 Edition. (2020).
  11. Policies to Reduce Greenhouse Gas Emissions in Industry – Successful Approaches and Lessons Learned: Workshop Report. (2003).
  1. Hertwich, E., Lifset, R., Pauliuk, S. & Heeren, N. Resource Efficiency and Climate Change – Material Efficiency Strategies for a Low-Carbon Future. (2020).
  2. Energy Technology Perspectives 2017. (2018).
  3. Carrara, S., Alves Dias, P., Plazzotta, B. & Pavel, C. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system. (2020).
  4. Krausmann, F., Wiedenhofer, D. & Haberl, H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. Global Environmental Change 61, 102034 (2020).
  5. Philibert, C. Renewable Energy for Industry – From green energy to green materials and fuels. (2017).
  6. Kristof, K. & Hennicke, P. Final Report on the Material Efficiency and Resource Conservation (MaRess) Project. (2010).
  7. Material efficiency in clean energy transitions. (2019).
  8. Wiedenhofer, D., Fishman, T., Lauk, C., Haas, W. & Krausmann, F. Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050. Ecological Economics 156, 121–133 (2019).
  9. The Circularity Gap Report 2019 – Closing the Circularity Gap in a 9% World. (2019).
  10. Reuter, M. A. et al. Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the International Resource Panel. (2013).
  11. The Circular Economy – A Powerful Force for Climate Mitigation. (2018).
  12. Taylor, P. The 4 Rs: reduce, reuse, recycle, and recover. in Tire Waste and Recycling 71–78 (Elsevier, 2021). doi:10.1016/B978-0-12-820685-0.00019-3.
  13. The road to circularity – Why a circular economy is becoming the new normal. (2019).
  14. Towards the Circular Economy: Accelerating the scale-up across global supply chains. (2014).
  15. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances 3, (2017).
  1. U.S. Environmental Protection Agency (EPA). Industrial Processes and Product Use. in Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019 (2019).
  2. The Circular Economy – A Powerful Force for Climate Mitigation. (2018).
  3. Philibert, C. Renewable Energy for Industry – From green energy to green materials and fuels. (2017).
  1. Olivier, J. & Peters, J. Trends in Global CO2 and Total Greenhouse Gas Emissions: 2020 Report. (2020).
  2. World Steel in Figures 2019. (2019).
  3. Iron and Steel Technology Roadmap – Towards more sustainable steelmaking. (2020).
  4. Vogl, V., Åhman, M. & Nilsson, L. J. Assessment of hydrogen direct reduction for fossil-free steelmaking. Journal of Cleaner Production 203, 736–745 (2018).
  5. Souza Filho, I. R. et al. Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry. Acta Materialia 213, 116971 (2021).
  6. Industrial Transformation 2050 – Pathways to Net-Zero Emissions from EU Heavy Industry. (2019).
  7. Schlemme, J., Schimmel, M. & Achtelik, C. Energiewende in der Industrie – Potenziale und Wechselwirkungen mit dem Energiesektor – Branchensteckbrief der Eisen- und Stahlindustrie. (2020).
  8. Hau, E. Windkraftanlagen. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-28877-7.
  9. Bataille, C. G. F. Physical and policy pathways to net‐zero emissions industry. WIREs Climate Change 11, (2020).

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

  1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]
  2. El-Gamal, S. M. A. & Selim, F. A. Utilization of some industrial wastes for eco-friendly cement production. Sustainable Materials and Technologies 12, 9–17 (2017).
  3. Choi, A. S., Gössling, S. & Ritchie, B. W. Flying with climate liability? Economic valuation of voluntary carbon offsets using forced choices. Transportation Research Part D: Transport and Environment 62, 225–235 (2018).
  4. Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change 9, 463–466 (2019).
  5. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  1. Nicolini, G. et al. Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agricultural and Forest Meteorology 248, 228–239 (2018).
  2. Osuri, A. M., Kasinathan, S., Siddhartha, M. K., Mudappa, D. & Raman, T. R. S. Effects of restoration on tree communities and carbon storage in rainforest fragments of the Western Ghats, India. Ecosphere 10, (2019).
  3. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]
  4. Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environmental Research Letters 12, 053002 (2017).
  5. Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences 104, 6550 (2007).
  6. Global Forest Resources Assessment 2020. Global Forest Resources Assessment 2020 (FAO, 2020). doi:10.4060/ca8753en.
  7. Breil, M., Davin, E. L. & Rechid, D. What determines the sign of the evapotranspiration response to afforestation in European summer? Biogeosciences 18, 1499–1510 (2021).
  8. Cerasoli, S., Yin, J. & Porporato, A. Cloud cooling effects of afforestation and reforestation at midlatitudes. Proceedings of the National Academy of Sciences 118, e2026241118 (2021).
  9. Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nature Communications 6, 6603 (2015).
  10. Mykleby, P. M., Snyder, P. K. & Twine, T. E. Quantifying the trade‐off between carbon sequestration and albedo in midlatitude and high‐latitude North American forests. Geophysical Research Letters 44, 2493–2501 (2017).
  11. Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439–1439 (2020).
  12. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002 (2018).
  13. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters 16, 073005 (2021).
  14. Doelman, J. C. et al. Afforestation for climate change mitigation: Potentials, risks and trade‐offs. Global Change Biology 26, 1576–1591 (2020).
  15. Churkina, G. et al. Buildings as a global carbon sink. Nature Sustainability 3, 269–276 (2020).
  16. Köberle, A. C. The Value of BECCS in IAMs: a Review. Current Sustainable/Renewable Energy Reports 6, 107–115 (2019).
  17. Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences 104, 6550 (2007).
  18. Gibbs, D., Harris, N. & Seymour, F. By the Numbers: The Value of Tropical Forests in the Climate Change Equation. (2018).
  19. European Comission. EDGAR-FOOD: the first global food emission inventory. (2021).
  20. Vage, A. How does European soy import affect the deforestation of the Amazon? (2021).
  1. Malmer, N. & Wallén, B. Peat Formation and Mass Balance in Subarctic Ombrotrophic Peatland around Abisko, Northern Scandinavia. Ecological Bulletins 79–92 (1996).
  2. Korhola, A. et al. The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews 29, 611–617 (2010).
  3. Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proceedings of the National Academy of Sciences 116, 4822–4827 (2019).
  4. Zeitz, J. Zur Geochemie von Mooren. in Geochemie und Umwelt 75–94 (Springer Berlin Heidelberg, 1997). doi:10.1007/978-3-642-59038-2_5.
  5. von Oheimb, G., Köbbing, J. F. & Groth, M. Klimaschutz: Beispiel Moorrenaturierung. in Nachhaltigkeitswissenschaften 455–473 (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-642-25112-2_12.
  6. Höper, H. Freisetzung von Treibhausgasen aus deutschen Mooren. TELMA – Berichte der Deutschen Gesellschaft für Moor- und Torfkunde 37, 85–116 (2007).
  7. Kratz, T. K. & DeWitt, C. B. Internal Factors Controlling Peatland-Lake Ecosystem Development. Ecology 67, 100–107 (1986).
  8. Hall, B. What’s so special about peatlands? https://www.iucn-uk-peatlandprogramme.org/sites/default/files/2019-05/Peatland_Leaflet_ONLINE_V2.pdf (2020).
  9. Bujak, E. Klimaschutz durch Mooerentwicklung. (2020).
  10. Global Forest Resources Assessment 2020. Global Forest Resources Assessment 2020 (FAO, 2020). doi:10.4060/ca8753en.
  11. Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications 11, 1644 (2020).
  12. Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications 11, 1644 (2020).
  13. Frolking, S., Talbot, J. & Subin, Z. M. Exploring the relationship between peatland net carbon balance and apparent carbon accumulation rate at century to millennial time scales. The Holocene 24, 1167–1173 (2014).
  14. Minayeva, T. Yu. & Sirin, A. A. Peatland biodiversity and climate change. Biology Bulletin Reviews 2, 164–175 (2012).
  15. Lasota, J. & Błońska, E. Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types. Water, Air, & Soil Pollution 229, 204 (2018).
  16. Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10, 718 (2019).
  17. Schlesinger, W. H. & Amundson, R. Managing for soil carbon sequestration: Let’s get realistic. Global Change Biology 25, 386–389 (2019).
  18. Griscom, B. W. et al. Natural climate solutions. Proceedings of the National Academy of Sciences 114, 11645 (2017).
  19. Markovska, O., Maliarchuk, M. & Maliarchuk, V. Modelling of humus balance under different systems of basic tillage and soil fertilization in crop rotations. Ukrainian Journal of Ecology 10, 291–295 (2020).
  20. Aydin, E., Šimanský, V., Horák, J. & Igaz, D. Potential of Biochar to Alternate Soil Properties and Crop Yields 3 and 4 Years after the Application. Agronomy 10, 889 (2020).
  21. Makhinova, A. F. & Makhinov, A. N. Role of humus substances in chemical soil pollution during deposit exploitation in Priokhotye and Priamurye. Environmental Research 188, 109766 (2020).
  22. TIAN, R., LIU, X., GAO, X., LI, R. & LI, H. Observation of specific ion effects in humus aggregation process. Pedosphere 31, 736–745 (2021).
  23. Wang, J. & Wang, S. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production 227, 1002–1022 (2019).
  24. Majumder, S., Neogi, S., Dutta, T., Powel, M. A. & Banik, P. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. Journal of Environmental Management 250, 109466 (2019).
  25. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002 (2018).
  26. Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters 13, 063001 (2018).
  27. Zhao, D. et al. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. Bioresource Technology 338, 125531 (2021).
  28. Zhang, L. et al. Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Conversion and Management 209, 112654 (2020).
  29. Igalavithana, A. D. et al. Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. Journal of Hazardous Materials 391, 121147 (2020).
  1. Beuttler, C., Charles, L. & Wurzbacher, J. The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions. Frontiers in Climate 1, 10 (2019).
  2. Pogge von Strandmann, P. A. E. et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nature Communications 10, 1983 (2019).
  3. Budinis, S., Krevor, S., Dowell, N. mac, Brandon, N. & Hawkes, A. An assessment of CCS costs, barriers and potential. Energy Strategy Reviews 22, 61–81 (2018).
  4. Tamaki, T., Nozawa, W. & Managi, S. Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies. Applied Energy 205, 428–439 (2017).
  5. Vielstädte, L. et al. Footprint and detectability of a well leaking CO2 in the Central North Sea: Implications from a field experiment and numerical modelling. International Journal of Greenhouse Gas Control 84, 190–203 (2019).
  6. Hasan, M. M. F., First, E. L., Boukouvala, F. & Floudas, C. A. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Computers & Chemical Engineering 81, 2–21 (2015).
  7. Song, C. et al. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy 124, 29–39 (2017).
  8. Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. Journal of Cleaner Production 224, 957–980 (2019).
  9. Keith, D. A Process for Capturing CO2 from the Atmosphere. Joule (2018).
  10. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  11. Negative Emissions Technologies and Reliable Sequestration. (National Academies Press, 2019). doi:10.17226/25259.
  12. Raza, A., Gholami, R., Rezaee, R., Rasouli, V. & Rabiei, M. Significant aspects of carbon capture and storage – A review. Petroleum 5, 335–340 (2019).
  13. Gabrielli, P., Gazzani, M. & Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO 2 Emissions Chemical Industry. Industrial & Engineering Chemistry Research 59, 7033–7045 (2020).
  14. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002 (2018).
  1. Strefler, J., Amann, T., Bauer, N., Kriegler, E. & Hartmann, J. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters 13, 034010 (2018).
  2. Power, I. M., Dipple, G. M., Bradshaw, P. M. D. & Harrison, A. L. Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada. International Journal of Greenhouse Gas Control 94, 102895 (2020).
  3. Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Frontiers in Climate 1, (2019).
  4. Rigopoulos, I. et al. Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry 91, 197–207 (2018).
  5. Taylor, L. L., Beerling, D. J., Quegan, S. & Banwart, S. A. Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development. Biology Letters 13, 20160868 (2017).
  6. Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P. & DeLucia, E. H. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biology Letters 13, 20160714 (2017).
  7. Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).
  8. Rinder, T. & von Hagke, C. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal – Insights from a regional assessment. Journal of Cleaner Production 315, 128178 (2021).
  9. Strefler, J., Amann, T., Bauer, N., Kriegler, E. & Hartmann, J. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters 13, 034010 (2018).
  10. Andrews, M. G. & Taylor, L. L. Combating Climate Change Through Enhanced Weathering of Agricultural Soils. Elements 15, 253–258 (2019).
  11. Spence, E., Cox, E. & Pidgeon, N. Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Climatic Change 165, 23 (2021).
  12. Goll, D. S. et al. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. Nature Geoscience 14, 545–549 (2021).
  13. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002 (2018).
  14. Butenschön, M., Lovato, T., Masina, S., Caserini, S. & Grosso, M. Alkalinization Scenarios in the Mediterranean Sea for Efficient Removal of Atmospheric CO2 and the Mitigation of Ocean Acidification. Frontiers in Climate 3, (2021).
  15. Caserini, S. et al. Affordable CO2 negative emission throughhydrogen from biomass, ocean liming, and CO2storage. Mitigation and Adaptation Strategies for Global Change 24, 1231–1248 (2019).
  16. Dansie, A. P., Wiggs, G. F. S., Thomas, D. S. G. & Washington, R. Measurements of windblown dust characteristics and ocean fertilization potential: The ephemeral river valleys of Namibia. Aeolian Research 29, 30–41 (2017).
  17. Yoon, J.-E. et al. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project. Biogeosciences 15, 5847–5889 (2018).
  18. Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The Potential for Ocean-Based Climate Action: Negative Emissions Technologies and Beyond. Frontiers in Climate 2, (2021).
  19. Ito, A., Ye, Y., Baldo, C. & Shi, Z. Ocean fertilization by pyrogenic aerosol iron. npj Climate and Atmospheric Science 4, 30 (2021).
  1. Mercer, A. M., Keith, D. W. & Sharp, J. D. Public understanding of solar radiation management. Environmental Research Letters 6, 044006 (2011).
  2. Ricke, K. L., Morgan, M. G. & Allen, M. R. Regional climate response to solar-radiation management. Nature Geoscience 3, 537–541 (2010).
  3. Geoengineering the climate Science, governance and uncertainty. https://royalsociety.org/topics-policy/publications/2009/geoengineering-climate/ (2009).
  4. Ming, T., de_Richter, R., Liu, W. & Caillol, S. Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? Renewable and Sustainable Energy Reviews 31, 792–834 (2014).
  5. Liu, Y. et al. Investigation on the distribution patterns and predictive model of solar radiation in urban street canyons with panorama images. Sustainable Cities and Society 75, 103275 (2021).
  6. Hartzell-Nichols, L. Precaution and Solar Radiation Management. Ethics, Policy & Environment 15, 158–171 (2012).
  7. Applegate, P. J. & Keller, K. How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet? Environmental Research Letters 10, 084018 (2015).
  8. Aaheim, A. et al. An economic evaluation of solar radiation management. Science of The Total Environment 532, 61–69 (2015).
  9. Benduhn, F., Schallock, J. & Lawrence, M. G. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles. Geophysical Research Letters 43, 9956–9963 (2016).
  10. Neukermans, A., Cooper, G. & Foster, J. Potential Methods for Dispersal of Precipitated Calcium Carbonate for Solar Radiation Management. American Geophysical Union, Fall Meeting 2020 (2020).
  11. Smith, J. P., Dykema, J. A. & Keith, D. W. Production of Sulfates Onboard an Aircraft: Implications for the Cost and Feasibility of Stratospheric Solar Geoengineering. Earth and Space Science 5, 150–162 (2018).
  12. Smith, W. & Wagner, G. Stratospheric aerosol injection tactics and costs in the first 15 years of deployment. Environmental Research Letters 13, 124001 (2018).
  13. Smith, W. The cost of stratospheric aerosol injection through 2100. Environmental Research Letters 15, 114004 (2020).
  14. Neuber, F. & Ott, K. The Buying Time Argument within the Solar Radiation Management Discourse. Applied Sciences 10, 4637 (2020).
  15. Dennig, F. Climate change and the re-evaluation of cost-benefit analysis. Climatic Change 151, 43–54 (2018).
  16. MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 20160454 (2018).
  17. Jones, A. et al. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres 118, 9743–9752 (2013).
  18. Moriyama, R. et al. The cost of stratospheric climate engineering revisited. Mitigation and Adaptation Strategies for Global Change 22, 1207–1228 (2017).
  19. Jones, A. et al. North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management. Atmospheric Chemistry and Physics 21, 1287–1304 (2021).
  20. Laakso, A., Snyder, P. K., Liess, S., Partanen, A.-I. & Millet, D. B. Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components. Earth System Dynamics 11, 415–434 (2020).
  21. Xin, Y., Lv, L. & Kong, F. Extreme Precipitation and Disasters: A Risk Analysis Based on Solar Radiation Management. in 155–174 (2020). doi:10.1007/978-981-13-9660-1_14.
  22. Cao, L. The Effects of Solar Radiation Management on the Carbon Cycle. Current Climate Change Reports 4, 41–50 (2018).
  23. Honegger, M.; Münch, S.; Hirsch, A.; Beuttler, (2017). Climate change, negative emissions and solar radiation management: It is time for an open societal conversation. White Paper by Risk-Dialogue Foundation St.Gallen for the Swiss Federal Office for the Environment.
  24. Smith, W. The cost of stratospheric aerosol injection through 2100. Environmental Research Letters 15, 114004 (2020).
  25. Macmartin, D., Ricke, K. & Keith, D. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 376, 20160454 (2018).
  26. Nicholson, S., Jinnah, S. & Gillespie, A. Solar radiation management: a proposal for immediate polycentric governance. Climate Policy 18, 322–334 (2018).
  27. Rickels, W. et al. Who turns the global thermostat and by how much? Energy Economics 91, 104852 (2020).
  1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press
  2. Dooley, K., Harrould‐Kolieb, E. & Talberg, A. Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework. Global Policy 12, 34–44 (2021).
  3. Fajardy, M. & mac Dowell, N. Recognizing the Value of Collaboration in Delivering Carbon Dioxide Removal. One Earth 3, 214–225 (2020).
  4. B, F. C. & J, M. K. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).
  5. Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Global Change Biology 23, 4303–4317 (2017).
  6. Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C.-F. Fair-share carbon dioxide removal increases major emitter responsibility. Nature Climate Change 10, 836–841 (2020).
  7. Sutherland, B. R. Tax Carbon Emissions and Credit Removal. Joule 3, 2071–2073 (2019).
  8. Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G. & Klein, D. Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change 118, 45–57 (2013).
  9. Cames, M. & Harthan, R. How additional is the Clean Development Mechanism? Analysis of the application of current tools and proposed alternatives. (2016).
  10. Cames, M. & Harthan, R. How additional is the Clean Development Mechanism? Analysis of the application of current tools and proposed alternatives. (2016).
  11. Bode, S. & Jung, M. Carbon dioxide capture and storage—liability for non-permanence under the UNFCCC. International Environmental Agreements: Politics, Law and Economics 6, 173–186 (2006).
  12. Honegger, Matthias; Poralla, Matthias; Michaelowa, Axel; Ahonen, Hanna-Mari(2021). Who Is paying for carbon dioxide removal? Designing policy instruments for mobilizing negative emissions technologies. Frontiers in Climate
  13. Ruseva, T. et al. Rethinking standards of permanence for terrestrial and coastal carbon: implications for governance and sustainability. Current Opinion in Environmental Sustainability 45, 69–77 (2020).
  14. vonHedemann, N., Wurtzebach, Z., Timberlake, T. J., Sinkular, E. & Schultz, C. A. Forest policy and management approaches for carbon dioxide removal. Interface Focus 10, 20200001 (2020).
  15. Galán-Martín, Á. et al. Delaying carbon dioxide removal in the European Union puts climate targets at risk. Nature Communications 12, 6490 (2021).
  16. Masson-Delmotte, V., Zhai, P. & Pörtner H. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. https://www.ipcc.ch/sr15/ (2018).
  17. Butenschön, M., Lovato, T., Masina, S., Caserini, S. & Grosso, M. Alkalinization Scenarios in the Mediterranean Sea for Efficient Removal of Atmospheric CO2 and the Mitigation of Ocean Acidification. Frontiers in Climate 3, (2021).
  18. Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).
  19. Keith, D. W., Holmes, G., st. Angelo, D. & Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2, 1573–1594 (2018).
  20. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002 (2018).
  21. Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters 13, 063001 (2018).
  22. Negative Emissions Technologies and Reliable Sequestration. (National Academies Press, 2019). doi:10.17226/25259.
  23. Emissions Gap Report 2020. (2020).
  24. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).

Your Content Goes Here

  1. Malott, C. Capitalism, Crisis, and Educational Struggle in the Postdigital. Postdigital Science and Education 1, 371–390 (2019).
  2. Laclau, E. Feudalism and Capitalism in Latin America. in Promise of Development (Routledge, 1986).
  3. Peck, J. Problematizing capitalism(s): Big difference? Environment and Planning A: Economy and Space 51, 1190–1196 (2019).
  4. Coles, A.-M. & Peters, S. R. Sustainable transitions and complex socio-technical systems: renewable energy and the electricity grid in the USA, UK and Germany. 20 (2018).
  5. Mohy ul din, S., Regupathi, A. & Abu-Bakar, A. Insurance effect on economic growth – among economies in various phases of development. Review of International Business and Strategy 27, 501–519 (2017).
  6. Jessop, B. On academic capitalism. Critical Policy Studies 12, 104–109 (2018).
  7. Magnin, E. Varieties of Capitalism and Sustainable Development: Institutional Complementarity Dynamics or Radical Change in the Hierarchy of Institutions? Journal of Economic Issues 52, 1143–1158 (2018).
  8. Zink, T. The Inevitable Labor and Environmental Crises and the Need for a New Economic System. Journal of Management Inquiry 28, 311–315 (2019).
  9. Pepper, D. On Contemporary Eco-socialism. in Eco-socialism as Politics 33–44 (Springer Netherlands, 2010). doi:10.1007/978-90-481-3745-9_3.
  10. Hill, P. J. Environmental problems under socialism. The Cato journal: an interdisciplinary journal of public policy analysis (1992).
  11. Goldman, M. I. & Tsuru, S. Economics of environment and renewable resources in socialist systems: Part 1: Russia Part 2: China. in Handbook of Natural Resources and Energy Economics (eds. Kneese, A. v & Sweeney, J. L.) vol. 2 (Elsevier, 1985).
  12. Carlson, E. & Bernstam, M. S. Population and Resources Under the Socialist Economic System. Population and Development Review 16, 374 (1990).
  13. Kelly, D. L. Capitalism, Socialism, and the Environment. Nature and Culture 8, 226–236 (2013).
  14. Ziesing, H.-J. Differenzierte Entwicklung des Energieverbrauchs. DIW Berlin https://www.diw.de/sixcms/detail.php?id=285609#HDR0.
  15. Dupuy, M. Retention of sulfur dioxide emissions in the GDR. in Environmentalism under Authoritarian Regimes (Routledge, 2018).
  16. Huff, T. Über die Umweltpolitik der DDR. Geschichte und Gesellschaft 40, 523–554 (2014).
  17. Voigt, A. Die Macht des Ökonomischen im Blick auf Natur und Landschaft. in Landschaftswandel – Wandel von Machtstrukturen 201–219 (Springer Fachmedien Wiesbaden, 2015). doi:10.1007/978-3-658-04330-8_13.
  18. Akella, A. S. & Cannon, J. B. Strengthening the Weakest Links – Strategies for Improving the Enforcement of Environmental Laws Globally. in Transnational Environmental Crime (Routledge, 2013).
  19. Arvidsson, A. Capitalism and the Commons. Theory, Culture & Society 37, 3–30 (2020).
  20. Gough, I. Heat, Greed and Human Need. (Edward Elgar Publishing, 2017). doi:10.4337/9781785365119.
  21. Howes, M. et al. Environmental Sustainability: A Case of Policy Implementation Failure? Sustainability 9, 165 (2017).
  22. Bosch, S. & Schmidt, M. Is the post-fossil era necessarily post-capitalistic? – The robustness and capabilities of green capitalism. Ecological Economics 161, 270–279 (2019).
  23. Liebig, S. Arbeitszeitverkürzung für eine nachhaltigere Wirtschaft? in Große Transformation? Zur Zukunft moderner Gesellschaften 211–228 (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-25947-1_11.
  24. Dynan, K. & Sheiner, L. GDP as a Measure of Economic Well-being. Hutchins Center Working Paper 43, (2018).
  25. Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environmental Research Letters 15, 065003 (2020).
  26. Coscieme, L. et al. Overcoming the Myths of Mainstream Economics to Enable a New Wellbeing Economy. Sustainability 11, 4374 (2019).
  1. Dzebo, A. & Nykvist, B. A new regime and then what? Cracks and tensions in the socio-technical regime of the Swedish heat energy system. Energy Research & Social Science 29, 113–122 (2017).
  2. Fridstrøm, L. & Østli, V. Direct and cross price elasticities of demand for gasoline, diesel, hybrid and battery electric cars: the case of Norway. European Transport Research Review 13, 3 (2021).
  3. Oskouei, M. Z., Mohammadi-Ivatloo, B., Abapour, M., Ahmadian, A. & Piran, Md. J. A novel economic structure to improve the energy label in smart residential buildings under energy efficiency programs. Journal of Cleaner Production 260, 121059 (2020).
  4. Einarsson, R., McCrory, G. & Persson, U. M. Healthy diets and sustainable food systems. The Lancet 394, 215 (2019).
  5. Tibola da Rocha, V., Brandli, L. L. & Kalil, R. M. L. Climate change education in school: knowledge, behavior and attitude. International Journal of Sustainability in Higher Education 21, 649–670 (2020).
  6. Nielsen, T. A. & Haustein, S. Behavioural effects of a health-related cycling campaign in Denmark: Evidence from the national travel survey and an online survey accompanying the campaign. Journal of Transport & Health 12, 152–163 (2019).
  7. Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. Nature Climate Change 7, 250–256 (2017).
  8. Hao, X. et al. Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. Science of The Total Environment 645, 347–355 (2018).
  9. Martinopoulos, G., Papakostas, K. T. & Papadopoulos, A. M. A comparative review of heating systems in EU countries, based on efficiency and fuel cost. Renewable and Sustainable Energy Reviews 90, 687–699 (2018).
  10. Klimaschutz und Klimaanpassung in der Regional- und Bauleitplanung. (Nomos Verlagsgesellschaft mbH & Co. KG, 2021). doi:10.5771/9783748924180.
  11. Handke, V., Hross, M., Bliklen, R., Jepsen, D. & Rödig, L. Recycling im Zeitalter der Digitalisierung: Spezifische Recyclingziele für Metalle und Kunststoffe aus Elektro-kleingeräten im ElektroG: Regulatorische Ansätze. (2019). doi:10.13140/RG.2.2.29830.22082.
  12. European Commission. European Green Deal: Commission proposes transformation of EU economy and society to meet climate ambitions. https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541 (2021).
  13. Bobeth, S. & Matthies, E. New opportunities for electric car adoption: the case of range myths, new forms of subsidies, and social norms. Energy Efficiency 11, 1763–1782 (2018).
  14. Strong, D. R. Impacts of diffusion policy: determinants of early smart meter diffusion in the US electric power industry. Industrial and Corporate Change (2019) doi:10.1093/icc/dtz011.
  15. Studer, S. & Rieder, S. What Can Policy-Makers Do to Increase the Effectiveness of Building Renovation Subsidies? Climate 7, 28 (2019).
  16. Runkel, M., Leisinger, C. & Fiedler, S. Klimaschädliche Subventionen abbauen, den Gordischen Knoten der Klimapolitik lösen Wirkung – Akzeptanz und die Pläne der Parteien. (2021).
  17. Kaniok, D. Straßenbenutzungsgebühren zur Verhaltenssteuerung. in Framing im Kontext von Straßenbenutzungsgebühren 9–48 (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-33302-7_2.
  18. Bachmann, T. M. Considering environmental costs of greenhouse gas emissions for setting a CO2 tax: A review. Science of The Total Environment 720, 137524 (2020).
  19. Richstein, J. C. & Neuhoff, K. CO2-Differenzverträge für innovative Klimalösungen in der Industrie. (2019).
  20. von Geibler, J. & Stelzer, F. Reallabore als umweltbezogenes Politikinstrument. (2020).
  21. Sergi, B. S., Popkova, E. G., Borzenko, K. v. & Przhedetskaya, N. v. Public–Private Partnerships as a Mechanism of Financing Sustainable Development. in 313–339 (2019). doi:10.1007/978-3-030-16522-2_13.
  22. Gui, Q., Liu, C. & Du, D. Globalization of science and international scientific collaboration: A network perspective. Geoforum 105, 1–12 (2019).
  23. Radtke, J. Klimaschutz und Kommunen: Städte als Hoffnungsträger? Forschungsjournal Soziale Bewegungen 33, 386–391 (2020).
  1. Kemfert, C., Schill, W.-P., Nicole, W. & Zaklan, A. Umweltwirkungen der Ökosteuer begrenzt, CO2-Bepreisung der nächste Schritt. DIW Wochenbericht 86, (2019).
  2. Nöh, L., Rutkowski, F. & Schwarz, M. Auswirkungen einer CO2-Bepreisung auf die Verbraucherpreisinflation. (2020).
  3. Frondel, M. CO2-Bepreisung in den nicht in den Emissionshandel integrierten Sektoren: Optionen für eine sozial ausgewogene Ausgestaltung. (2019).
  4. Lin, B. & Li, X. The effect of carbon tax on per capita CO2 emissions. Energy Policy 39, 5137–5146 (2011).
  5. Mardones, C. & Baeza, N. Economic and environmental effects of a CO2 tax in Latin American countries. Energy Policy 114, 262–273 (2018).
  6. Mardones, C. & Flores, B. Effectiveness of a CO2 tax on industrial emissions. Energy Economics 71, 370–382 (2018).
  7. Edenhofer, O. & Schmidt, C. M. Eckpunkte einer CO2-Preisreform: Gemeinsamer Vorschlag von Ottmar Edenhofer (PIK/MCC) und Christoph M. Schmidt (RWI). (2018).
  8. Zhu, K., Victoria, M., Brown, T., Andresen, G. B. & Greiner, M. Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe. Applied Energy 236, 622–634 (2019).
  9. Edenhofer, O., Flachsland, C., Kalkuhl, M., Knopf, B. & Pahle, M. Optionen für eine CO2-Preisreform. (2019).
  10. Welfens, P. J. J. Makroökonomische Aspekte der CO2-Bepreisung. in Klimaschutzpolitik – Das Ende der Komfortzone 215–223 (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-27884-7_13.
  1. Haller, I. Die Integrationsdynamik des Europäischen Emissionshandelssystems. (2017).
  2. Cao, J., Ho, M. S., Jorgenson, D. W. & Nielsen, C. P. China’s emissions trading system and an ETS-carbon tax hybrid. Energy Economics 81, 741–753 (2019).
  3. Rogge, K. S., Schneider, M. & Hoffmann, V. H. The innovation impact of the EU Emission Trading System — Findings of company case studies in the German power sector. Ecological Economics 70, 513–523 (2011).
  4. Welfens, P. J. J. Schwachpunkte des EU-Emissionshandelssystems und Perspektiven zur Verbindung von Emissionshandelssystemen und WTO-Weiterentwicklung. in Klimaschutzpolitik – Das Ende der Komfortzone 283–287 (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-27884-7_20.
  5. Kemfert, C., Schmalz, S. & Wägner, N. CO2-Steuer oder Ausweitung des Emissionshandels: Wie sich die Klimaziele besser erreichen lassen. (2019).
  6. Edenhofer, O. & Schmidt, C. M. Eckpunkte einer CO2-Preisreform: Gemeinsamer Vorschlag von Ottmar Edenhofer (PIK/MCC) und Christoph M. Schmidt (RWI). (2018).
  7. Edenhofer, O., Flachsland, C., Kalkuhl, M., Knopf, B. & Pahle, M. Optionen für eine CO2-Preisreform. (2019).
  8. Xiao, B., Fan, Y. & Guo, X. Dynamic interactive effect and co-design of SO2 emission tax and CO2 emission trading scheme. Energy Policy 152, 112212 (2021).
  9. Mardones, C. Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile. Energy & Environment 32, 820–833 (2021).
  10. Jia, Z. & Lin, B. Rethinking the choice of carbon tax and carbon trading in China. Technological Forecasting and Social Change 159, 120187 (2020).
  11. Welfens, P. J. J. Makroökonomische Aspekte der CO2-Bepreisung. in Klimaschutzpolitik – Das Ende der Komfortzone 215–223 (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-27884-7_13.
  12. Lin, B. & Li, X. The effect of carbon tax on per capita CO2 emissions. Energy Policy 39, 5137–5146 (2011).
  13. Edenhofer, O., Flachsland, C. & Schmid, L. K. Wie der Emissionshandel wieder zur zentralen Säule der europäischen Klimapolitik werden kann. in 12 Jahre Europäischer Emissionshandel in Deutschland. Bilanz und Perspektiven für einen wirkungsvollen Klimaschutz (eds. Angrick, M., Kühleis, C., Landgrebe, J. & Weiß, J.) (Metropolis Verlag für Ökonomie, Gesellschaft und Politik, 2018).
  1. The Worldbank. Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/.
  2. Clausen, J. & Beucker, S. Verbreitung radikaler Systeminnovationen Fallbeispiel Wärmeversorgung Schweden. (2019).
  3. Hofbauer Peréz, M. & Rhode, C. Carbon Pricing: International Comparison. (2020).
  4. Mardones, C. & García, C. Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants. Energy 206, 118157 (2020).
  5. S. Energy Information Administration. Coal power generation declines in United Kingdom as natural gas, renewables grow. (2018).
  6. Puls, T. & Schaefer, T. CO2-Reduktion im Verkehr: Was kann Deutschland von Schweden lernen? (2019).
  7. Andersson, J. J. Carbon Taxes and CO2 Emissions: Sweden as a Case Study. American Economic Journal: Economic Policy 11, 1–30 (2019).
  8. Energiebedingte CO2-Emissionen durch den Verkehr in Deutschland in den Jahren 1990 bis 2019. https://de.statista.com/statistik/daten/studie/12188/umfrage/co2-emissionen-durch-verkehr-in-deutschland-seit-1990/ (2021).
  9. Dzebo, A. & Nykvist, B. A new regime and then what? Cracks and tensions in the socio-technical regime of the Swedish heat energy system. Energy Research & Social Science 29, 113–122 (2017).
  10. Dzebo, A. & Nykvist, B. A new regime and then what? Cracks and tensions in the socio-technical regime of the Swedish heat energy system. Energy Research & Social Science 29, 113–122 (2017).
  11. Ulucak, R., Danish & Kassouri, Y. An assessment of the environmental sustainability corridor: Investigating the non‐linear effects of environmental taxation on CO2 emissions. Sustainable Development 28, 1010–1018 (2020).
  12. Santos, G. Road transport and CO 2 emissions: What are the challenges? Transport Policy 59, 71–74 (2017).
  13. Karki, S., Mann, M. & Salehfar, H. Substitution and Price Effects of Carbon Tax on CO2 Emissions Reduction from Distributed Energy Sources. in 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources 236–243 (IEEE, 2006). doi:10.1109/PSAMP.2006.285394.
  14. David, D. & Venkatachalam, A. A comparative study on the role of public-private partnerships and green investment banks in boosting low-carbon investments. (2018).
  15. Sharifi, A. Trade-offs and conflicts between urban climate change mitigation and adaptation measures: A literature review. Journal of Cleaner Production 276, 122813 (2020).
  16. Welfens, P. J. J. CO2-Steuer als vernünftiges Klimapolitik-Instrument. in Klimaschutzpolitik – Das Ende der Komfortzone 235–240 (Springer Fachmedien Wiesbaden, 2019). doi:10.1007/978-3-658-27884-7_16.
  1. Böhringer, C., Carbone, J. C. & Rutherford, T. F. Embodied Carbon Tariffs. The Scandinavian Journal of Economics 120, 183–210 (2018).
  2. Naegele, H. & Zaklan, A. Does the EU ETS cause carbon leakage in European manufacturing? Journal of Environmental Economics and Management 93, 125–147 (2019).
  3. Zeng, Y., Weishaar, S. E. & Vedder, H. H. B. Electricity regulation in the Chinese national emissions trading scheme (ETS): lessons for carbon leakage and linkage with the EU ETS. Climate Policy 18, 1246–1259 (2018).
  4. Kortum, S. & Weisbach, D. The design of border adjustments for carbon prices. National Tax Journal 70, 421–446 (2017).
  5. Europäische Union: Bruttoinlandsprodukt (BIP) in den Mitgliedstaaten der EU im Jahr 2020. https://de.statista.com/statistik/daten/studie/188776/umfrage/bruttoinlandsprodukt-bip-in-den-eu-laendern/ (2021).
  6. Mehling, M. A., van Asselt, H., Das, K., Droege, S. & Verkuijl, C. Designing Border Carbon Adjustments for Enhanced Climate Action. American Journal of International Law 113, 433–481 (2019).
  7. Eicke, L., Weko, S., Apergi, M. & Marian, A. Pulling up the carbon ladder? Decarbonization, dependence, and third-country risks from the European carbon border adjustment mechanism. Energy Research & Social Science 80, 102240 (2021).
  8. Edenhofer, O. & Schmidt, C. M. Eckpunkte einer CO2-Preisreform: Gemeinsamer Vorschlag von Ottmar Edenhofer (PIK/MCC) und Christoph M. Schmidt (RWI). (2018).
  9. Landis, F. Cost distribution and equity of climate policy in Switzerland. Swiss Journal of Economics and Statistics 155, 11 (2019).
  10. Bach, S., Isaak, N., Kampfmann, L., Kemfert, C. & Wägner, N. Nachbesserungen beim Klimapaket richtig, aber immer noch unzureichend: CO2-Preise stärker erhöhen und Klimaprämie einführen. (2020).
  11. Stede, J., Bach, S., Ismer, R., Meßerschmidt, K. & Neuhoff, K. Optionen zur Auszahlung einer Pro-Kopf-Klimaprämie für einen sozialverträglichen CO2-Preis. Endbericht: Forschungsprojekt im Auftrag des Bundesministeriums der Finanzen (fe 3/19). (2020).
  12. MCC Common Economics Blog. Das deutsche Klima-Finanzpaket. https://blog.mcc-berlin.net/post/article/das-deutsche-klima-finanzpaket.html.
  13. Gechert, S., Rietzler, K., Schreiber, S. & Stein, U. Wirtschaftliche Instrumente für eine klima- und sozialverträgliche CO2-Bepreisung: Gutachten im Auftrag des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit . (2019).
  14. Bach, S. et al. CO2-Bepreisung im Wärme- und Verkehrssektor: Diskussion von Wirkungen und alternativen Entlastungsoptionen. (2019).
  15. Klenert, D. et al. Making carbon pricing work for citizens. Nature Climate Change 8, 669–677 (2018).
  16. Andersson, J. J. Carbon Taxes and CO2 Emissions: Sweden as a Case Study. American Economic Journal: Economic Policy 11, 1–30 (2019).
  17. Caron, J., Cohen, S. M., Brown, M. & Reilly, J. M. Exploring the ipacts of a national CO2 tax and revenue recycling options with a coupled electricity-economy model. Climate Change Economics 09, 1840015 (2018).
  1. Jagers, S. C., Lachapelle, E., Martinsson, J. & Matti, S. Bridging the ideological gap? How fairness perceptions mediate the effect of revenue recycling on public support for carbon taxes in the United States, Canada and Germany. Review of Policy Research 38, 529–554 (2021).
  2. Klenert, D. et al. Making carbon pricing work for citizens. Nature Climate Change 8, 669–677 (2018).
  3. Liao, T.-S. Addressing Fairness Issues in the Carbon Tax Law: The Case of British Columbia, Canada. VNU Journal of Science: Legal Studies 34, (2018).
  4. Sun, Y. et al. Optimizing carbon tax rates and revenue recycling schemes: Model development, and a case study for the Bohai Bay area, China. Journal of Cleaner Production 296, 126519 (2021).
  5. Beiser-McGrath, L. F. & Bernauer, T. Could revenue recycling make effective carbon taxation politically feasible? Science Advances 5, (2019).
  6. MCC Common Economics Blog. Das deutsche Klima-Finanzpaket. https://blog.mcc-berlin.net/post/article/das-deutsche-klima-finanzpaket.html.
  7. Lin, B. & Jia, Z. What are the main factors affecting carbon price in Emission Trading Scheme? A case study in China. Science of The Total Environment 654, 525–534 (2019).
  8. Popp, D. International Technology Transfer, Climate Change, and the Clean Development Mechanism. Review of Environmental Economics and Policy 5, 131–152 (2011).
  9. Benites-Lazaro, L. L. & Mello-Théry, N. A. CSR as a legitimatizing tool in carbon market: Evidence from Latin America’s Clean Development Mechanism. Journal of Cleaner Production 149, 218–226 (2017).
  10. Kim, J. & Park, K. Effect of the Clean Development Mechanism on the deployment of renewable energy: Less developed vs. well-developed financial markets. Energy Economics 75, 1–13 (2018).
  11. Öko-Institut e.V. How additional is the Clean Development Mechanism? (2016).
  12. Nabernegg, S., Bednar-Friedl, B., Muñoz, P., Titz, M. & Vogel, J. National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains. Ecological Economics 158, 146–157 (2019).
  13. Öko-Institut e.V. How additional is the Clean Development Mechanism? (2016).
  14. Effective Carbon Rates 2021 Pricing Carbon Emissions through Taxes and Emissions Trading. (2021).
  15. Kirchner, M., Sommer, M., Kratena, K., Kletzan-Slamanig, D. & Kettner-Marx, C. CO2 taxes, equity and the double dividend – Macroeconomic model simulations for Austria. Energy Policy 126, 295–314 (2019).
  16. Kirchner, M. et al. CO2 tax scenarios for Austria: Impacts on household income groups, CO2 emissions, and the economy. (2018).
  17. Kolev, G. v, Kube, R., Schaefer, T. & Stolle, L. Carbon Border Adjustment Mechanism (CBAM): Motivation, Ausgestaltung und wirtschaftliche Implikationen eines CO2-Grenzausgleichs in der EU. (2021).
  18. Santos, G. Road transport and CO 2 emissions: What are the challenges? Transport Policy 59, 71–74 (2017).
  19. David, D. & Venkatachalam, A. A comparative study on the role of public-private partnerships and green investment banks in boosting low-carbon investments. (2018).
  20. Sharifi, A. Trade-offs and conflicts between urban climate change mitigation and adaptation measures: A literature review. Journal of Cleaner Production 276, 122813 (2020).
  1. Erickson, P., Kartha, S., Lazarus, M. & Tempest, K. Assessing carbon lock-in. Environmental Research Letters 10, 084023 (2015).
  2. Bos, K. & Gupta, J. Stranded assets and stranded resources: Implications for climate change mitigation and global sustainable development. Energy Research & Social Science 56, 101215 (2019).
  3. Caldecott, B. Introduction to special issue: stranded assets and the environment. Journal of Sustainable Finance & Investment 7, 1–13 (2017).
  4. Stranded Assets and the Environment Risk, Resilience and Opportunity. (Routledge, 2018).
  5. Global Renewables Outlook: Energy transformation 2050. (2020).
  6. Bruttoinlandsprodukt (BIP) in Deutschland von 1991 bis 2020. https://de.statista.com/statistik/daten/studie/1251/umfrage/entwicklung-des-bruttoinlandsprodukts-seit-dem-jahr-1991/ (2021).
  7. Fisch-Romito, V., Guivarch, C., Creutzig, F., Minx, J. C. & Callaghan, M. W. Systematic map of the literature on carbon lock-in induced by long-lived capital. Environmental Research Letters 16, 053004 (2021).
  8. Coady, D., Parry, I., Sears, L. & Shang, B. How Large Are Global Fossil Fuel Subsidies? World Development 91, 11–27 (2017).
  9. International Institute for Sustainable Development (IISD). Raising Ambition Through Fossil Fuel Subsidy Reform: Greenhouse gas emissions modelling results from 26 countries. (2019).
  10. Matsuo, T. & Schmidt, T. S. Hybridizing low-carbon technology deployment policy and fossil fuel subsidy reform: a climate finance perspective. Environmental Research Letters 12, 014002 (2017).
  11. Flammer, C. Corporate green bonds. Journal of Financial Economics 142, 499–516 (2021).
  12. Climate Bonds Initiative. Green Bonds: Global State of the Market 2019.
  13. Chen, Y. & Zhao, Z. J. The rise of green bonds for sustainable finance: global standards and issues with the expanding Chinese market. Current Opinion in Environmental Sustainability 52, 54–57 (2021).
  1. Khan, M. R. & Roberts, J. T. Adaptation and international climate policy. WIREs Climate Change 4, 171–189 (2013).
  2. Lindenthal, A. Leadership im Klimaschutz: Die Rolle der Europäischen Union in der internationalen Umweltpolitik. (Campus, 2009).
  3. Seo, S. N. Beyond the Paris Agreement: Climate change policy negotiations and future directions. Regional Science Policy & Practice 9, 121–140 (2017).
  4. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
  5. The Paris Agreement. (2015).
  6. Light, A. Climate Diplomacy. vol. 1 (Oxford University Press, 2016).
  7. Schlosberg, D. & Collins, L. B. From environmental to climate justice: climate change and the discourse of environmental justice. WIREs Climate Change 5, 359–374 (2014).
  8. Climate Change 2021: The Physical Science Basis. (2021).
  9. AR5 Synthesis Report: Climate Change 2014. (2014).
  10. Ritchie, H. Who has contributed most to global CO2 emissions? https://ourworldindata.org/contributed-most-global-co2 (2019).
  11. Khan, M. R. & Roberts, J. T. Adaptation and international climate policy. WIREs Climate Change 4, 171–189 (2013).
  12. Kim, J. E. Sustainable energy transition in developing countries: the role of energy aid donors. Climate Policy 19, 1–16 (2019).
  13. Dupont, C., Oberthür, S. & Biedenkopf, K. Climate Change: Adapting to Evolving Internal and External Dynamics. in European Union External Environmental Policy 105–124 (Springer International Publishing, 2018). doi:10.1007/978-3-319-60931-7_6.
  14. Steckel, J. C. & Jakob, M. The role of financing cost and de-risking strategies for clean energy investment. International Economics 155, 19–28 (2018).
  15. Gupta, A. & van Asselt, H. Transparency in multilateral climate politics: Furthering (or distracting from) accountability? Regulation & Governance 13, 18–34 (2019).
  16. Höhne, N. et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change 11, 820–822 (2021).
  17. van Soest, H. L., den Elzen, M. G. J. & van Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nature Communications 12, 2140 (2021).
  18. Climate Action Tracker. Paris Agreement turning point – Wave of net zero targets reduces warming estimate to 2.1 ̊C in 2100 – All eyes on 2030 targets. (2020).
  19. Government of South Africa. South Africa’s low-emission development strategy 2050. (2020).
  20. Fragkos, P. et al. Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy 216, 119385 (2021).
  21. Climate Action Tracker. Climate summit momentum: Paris commitments improved warming estimate to 2.4 ̊C. (2021).
  1. Climate Change 2021: The Physical Science Basis. (2021).
  2. AR5 Synthesis Report: Climate Change 2014. (2014).
  3. Ruela, R., Sousa, M. C., deCastro, M. & Dias, J. M. Global and regional evolution of sea surface temperature under climate change. Global and Planetary Change 190, 103190 (2020).
  4. Taskinsoy, J. No Brainer, Tackle Climate Change by 2030 or Await the Doomsday by 2100. SSRN Electronic Journal (2020) doi:10.2139/ssrn.3532709.
  5. Egli, F., Steffen, B. & Schmidt, T. S. A dynamic analysis of financing conditions for renewable energy technologies. Nature Energy 3, 1084–1092 (2018).
  6. Schmidt, T. S. Low-carbon investment risks and de-risking. Nature Climate Change 4, 237–239 (2014).
  7. Doğan, B., Driha, O. M., Balsalobre Lorente, D. & Shahzad, U. The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries. Sustainable Development 29, 1–12 (2021).
  8. Vakulchuk, R., Overland, I. & Scholten, D. Renewable energy and geopolitics: A review. Renewable and Sustainable Energy Reviews 122, 109547 (2020).
  9. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen. Politikpapier: Über Klimaneutralität hinausdenken. (2021).
  10. Warner, K. J. & Jones, G. A. The 21st Century Coal Question: China, India, Development, and Climate Change. Atmosphere 10, 476 (2019).
  11. Fan, J.-L., Xu, M., Yang, L. & Zhang, X. Benefit evaluation of investment in CCS retrofitting of coal-fired power plants and PV power plants in China based on real options. Renewable and Sustainable Energy Reviews 115, 109350 (2019).
  12. Qin, Y., Tong, F., Yang, G. & Mauzerall, D. L. Challenges of using natural gas as a carbon mitigation option in China. Energy Policy 117, 457–462 (2018).
  13. Steckel, J. C., Hilaire, J., Jakob, M. & Edenhofer, O. Coal and carbonization in sub-Saharan Africa. Nature Climate Change 10, 83–88 (2020).
  14. Joshua, U. & Alola, A. A. Accounting for environmental sustainability from coal-led growth in South Africa: the role of employment and FDI. Environmental Science and Pollution Research 27, 17706–17716 (2020).
  15. Gupta, J. A history of international climate change policy. WIREs Climate Change 1, 636–653 (2010).
  16. Khalid, A. M., Sharma, S. & Dubey, A. K. Concerns of developing countries and the sustainable development goals: case for India. International Journal of Sustainable Development & World Ecology 28, 303–315 (2021).
  17. Olawuyi, D. S. From technology transfer to technology absorption: addressing climate technology gaps in Africa. Journal of Energy & Natural Resources Law 36, 61–84 (2018).
  18. Shabalala, D. B. Climate Change, Technology Transfer, and Intellectual Property: A “Modest Proposal” for an IP Enforcement Moratorium. Fordham Envtl. L. Rev. (2020).
  19. Kuhl, L. Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges. Climate and Development 12, 353–368 (2020).
  20. ben Jebli, M., ben Youssef, S. & Apergis, N. The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review 28, 2 (2019).
  21. de Souza, L. E. V., Bosco, E. M. G. R. L., Cavalcante, A. G. & da Costa Ferreira, L. Postcolonial theories meet energy studies: “Institutional orientalism” as a barrier for renewable electricity trade in the Mediterranean region. Energy Research & Social Science 40, 91–100 (2018).
  22. Simsek, Y., Watts, D. & Escobar, R. Sustainability evaluation of Concentrated Solar Power (CSP) projects under Clean Development Mechanism (CDM) by using Multi Criteria Decision Method (MCDM). Renewable and Sustainable Energy Reviews 93, 421–438 (2018).
  23. Dong, K. et al. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Economics 75, 180–192 (2018).
  24. Betz, J. Bevölkerung. in Entwicklungspolitik 145–154 (Springer Fachmedien Wiesbaden, 2021). doi:10.1007/978-3-658-32467-4_11.
  25. Zhiznin, S. Z., Timokhov, V. M. & Gusev, A. L. Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy 45, 31353–31366 (2020).
  26. Aqachmar, Z. & Lahrech, K. Photovoltaics in MENA region: Energetic, environmental, and economic potential. in 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) 1–4 (IEEE, 2020). doi:10.1109/IRASET48871.2020.9091975.

Your Content Goes Here

  1. Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences 115, 8252 (2018).
  2. IRENA (2020) Measuring the socio-economics of transition: Focus on jobs, International Renewable Energy Agency.
  3. Rozenberg, J., Vogt-Schilb, A. & Hallegatte, S. Instrument choice and stranded assets in the transition to clean capital. Journal of Environmental Economics and Management 100, 102183 (2020).
  4. Sen, S. & von Schickfus, M.-T. Climate policy, stranded assets, and investors’ expectations. Journal of Environmental Economics and Management 100, 102277 (2020).
  5. Unruh, G. C. The Real Stranded Assets of Carbon Lock-In. One Earth 1, 399–401 (2019).
  6. Caldecott, B. Introduction to special issue: stranded assets and the environment. Journal of Sustainable Finance & Investment 7, 1–13 (2017).
  7. Pai, S., Emmerling, J., Drouet, L., Zerriffi, H. & Jewell, J. Meeting well-below 2°C target would increase energy sector jobs globally. One Earth 4, 1026–1036 (2021).
  8. Garrett-Peltier, H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Economic Modelling 61, 439–447 (2017).
  9. International Labour Office. World Employment Social Outlook 2018, Greening with jobs. (2018).
  10. Green, J. & Newman, P. Disruptive innovation, stranded assets and forecasting: the rise and rise of renewable energy. Journal of Sustainable Finance & Investment 7, 169–187 (2017).
  11. Dell’Anna, F. Green jobs and energy efficiency as strategies for economic growth and the reduction of environmental impacts. Energy Policy 149, 112031 (2021).
  12. Sulich, A., Rutkowska, M. & Popławski, Ł. Green jobs, definitional issues, and the employment of young people: An analysis of three European Union countries. Journal of Environmental Management 262, 110314 (2020).
  13. Bundesministerium für Umwelt, N. und nukleare S. (BMU). GreenTech made in Germany 2021, Umwelttechnik-Atlas für Deutschland. (2021).
  14. Ram, M., Aghahosseini, A. & Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technological Forecasting and Social Change 151, 119682 (2020).
  15. McCauley, D. & Heffron, R. Just transition: Integrating climate, energy and environmental justice. Energy Policy 119, 1–7 (2018).
  16. Sulich, A. & Zema, T. Green jobs, a new measure of public management and sustainable development. EUROPEAN JOURNAL OF ENVIRONMENTAL SCIENCES 8, 69–75 (2018).
  17. Vona, F. Job losses and political acceptability of climate policies: why the ‘job-killing’ argument is so persistent and how to overturn it. Climate Policy 19, 524–532 (2019).
  18. Zink, L. Handels- und Infrastrukturpolitische Herausforderungen des europäischen Gasmarkts mit räumlichem Fokus auf Osteuropa. (2019).
  19. Grunau, P. Covid-19-Pandemie und Klimawandel als Beschleuniger des Strukturwandels: Fachkräftesicherung in Zeiten von Digitalisierung und Defossilisierung. Stellungnahme des IAB zur Anhörung beim Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung am 8. Oktober 2020. (2020).
  1. Pai, S., Emmerling, J., Drouet, L., Zerriffi, H. & Jewell, J. Meeting well-below 2°C target would increase energy sector jobs globally. One Earth 4, 1026–1036 (2021).
  2. Louie, E. P. & Pearce, J. M. Retraining investment for U.S. transition from coal to solar photovoltaic employment. Energy Economics 57, 295–302 (2016).
  3. International Labour Office. World Employment Social Outlook 2018, Greening with jobs. (2018).
  4. Garrett-Peltier, H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Economic Modelling 61, 439–447 (2017).
  5. Sachs, J. America’s Zero Carbon Action Plan (ZCAP). (2020).
  6. Bosch, G. Öffentliche Finanzierung von Weiterbildung im Strukturwandel: Vorschläge zu einem stimmigen Gesamtsystem. https://www.econstor.eu/handle/10419/216078 (2019).
  7. Lange, J. & Danielyzek, R. Präventive Strukturpolitik, Wie können sich Regionen auf den (durch Klimaschutz bedingten) Strukturwandel einstellen? Loccumer Protokolle (2020).
  8. Dullien, S., Gechert, S. & Herzog-Stein, A. Wirtschaftspolitische Herausforderungen 2020: Im Zeichen des Klimawandels. (2020).
  9. Gerstung, T. Glasfaser statt Eisenbahngleis: Eine Stadt sucht ihre Zukunft. Jahrbuch des Kölnischen Geschichtsvereins 80, 149–190 (2010).
  10. della Bosca, H. & Gillespie, J. The coal story: Generational coal mining communities and strategies of energy transition in Australia. Energy Policy 120, 734–740 (2018).
  11. Evans, G. & Phelan, L. Transition to a post-carbon society: Linking environmental justice and just transition discourses. Energy Policy 99, 329–339 (2016).
  12. McCauley, D. & Heffron, R. Just transition: Integrating climate, energy and environmental justice. Energy Policy 119, 1–7 (2018).
  13. Löw Beer, D., Gürtler, K., Herberg, J. & Haas, T. Wie legitim ist der Kohlekompromiss? Spannungsfelder und Verhandlungsdynamiken im Prozess der Kohlekommission. Zeitschrift für Politikwissenschaft 31, 393–416 (2021).
  14. Markkanen, S. & Anger-Kraavi, A. Social impacts of climate change mitigation policies and their implications for inequality. Climate Policy 19, 827–844 (2019).
  15. Oei, P.-Y. et al. Coal phase-out in Germany – Implications and policies for affected regions. Energy 196, 117004 (2020).
  16. della Bosca, H. & Gillespie, J. The coal story: Generational coal mining communities and strategies of energy transition in Australia. Energy Policy 120, 734–740 (2018).
  17. Markard, J., Rinscheid, A. & Widdel, L. Analyzing transitions through the lens of discourse networks: Coal phase-out in Germany. Environmental Innovation and Societal Transitions 40, 315–331 (2021).
  1. Komarnicki, P., Kranhold, M. & Styczynski, Z. A. Rolle der Informations- und Kommunikationstechnik (IKT) – Digitalisierung der Energiewirtschaft. in 165–206 (2021). doi:10.1007/978-3-658-33559-5_6.
  2. Lange, S., Pohl, J. & Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics 176, 106760 (2020).
  3. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).
  4. Andrae, A. & Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 6, 117–157 (2015).
  5. Xu, G. & Zhong, X. Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8. Remote Sensing Letters 8, 1052–1061 (2017).
  6. Moning, C. Energiewende und Naturschutz – Eine Schicksalsfrage auch für Rotmilane. in Bausteine der Energiewende 331–344 (Springer Fachmedien Wiesbaden, 2018). doi:10.1007/978-3-658-19509-0_16.
  7. Lange, S., Pohl, J. & Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics 176, 106760 (2020).
  8. Amri, F. Carbon dioxide emissions, total factor productivity, ICT, trade, financial development, and energy consumption: testing environmental Kuznets curve hypothesis for Tunisia. Environmental Science and Pollution Research 25, 33691–33701 (2018).
  9. Ahmed, F., Naeem, M. & Iqbal, M. ICT and renewable energy: a way forward to the next generation telecom base stations. Telecommunication Systems 64, 43–56 (2017).
  10. Dileep, G. A survey on smart grid technologies and applications. Renewable Energy 146, 2589–2625 (2020).
  11. Sovacool, B. K. & Furszyfer Del Rio, D. D. Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renewable and Sustainable Energy Reviews 120, 109663 (2020).
  12. Pelonero, L., Fornaia, A. & Tramontana, E. From Smart City to Smart Citizen: Rewarding Waste Recycle by Designing a Data-Centric IoT based Garbage Collection Service. in 2020 IEEE International Conference on Smart Computing (SMARTCOMP) 380–385 (2020). doi:10.1109/SMARTCOMP50058.2020.00081.
  13. Weyand, A., Heßler, F., Sossenheimer, J. & Abele, E. Ressourceneffizienz in der Produktion. Zeitschrift für wirtschaftlichen Fabrikbetrieb 114, 525–529 (2019).
  14. Schmidt, M., Spieth, H., Bauer, J. & Haubach, C. Ressourceneffizienz durch Hinzufügung – additiver Leichtbau für die Industrie 4.0. in 100 Betriebe für Ressourceneffizienz – Band 1 222–225 (Springer Berlin Heidelberg, 2017). doi:10.1007/978-3-662-53367-3_47.
  15. Bu, F. & Wang, X. A smart agriculture IoT system based on deep reinforcement learning. Future Generation Computer Systems 99, 500–507 (2019).
  1. Sugden, R. On Nudging: A Review of Nudge: Improving Decisions About Health, Wealth and Happiness by Richard H. Thaler and Cass R. Sunstein. International Journal of the Economics of Business 16, 365–373 (2009).
  2. Weber, F. & Schäfer, H.-B. „NUDGING“, EIN SPROSS DER VERHALTENSÖKONOMIE: Überlegungen zum liberalen Paternalismus auf gesetzgeberischer Ebene. Der Staat 56, 561–592 (2017).
  3. Cohen, S. A., Higham, J. E. S. & Cavaliere, C. T. Binge flying: Behavioural addiction and climate change. Annals of Tourism Research 38, 1070–1089 (2011).
  4. Schrems, I. & Upham, P. Cognitive Dissonance in Sustainability Scientists Regarding Air Travel for Academic Purposes: A Qualitative Study. Sustainability 12, 1837 (2020).
  5. Sunstein, CR& Reisch, LA (eds) 2017, The Economics of Nudge. Critical Concepts of Economics, vol. 4, Routledge, London.
  6. Marchiori, D. R., Adriaanse, M. A. & de Ridder, D. T. D. Unresolved questions in nudging research: Putting the psychology back in nudging. Social and Personality Psychology Compass 11, e12297 (2017).
  7. Sunstein, C. R. & Reisch, L. A. Trusting Nudges. (Routledge, 2019). doi:10.4324/9780429451645.
  8. Lehner, M., Mont, O. & Heiskanen, E. Nudging – A promising tool for sustainable consumption behaviour? Journal of Cleaner Production 134, 166–177 (2016).
  9. Human, S. & Capraro, V. The Effect of Nudging Personal and Injunctive Norms on the Trade-Off Between Objective Equality and Efficiency. SSRN Electronic Journal (2020) doi:10.2139/ssrn.3703684.
  10. Campbell-Arvai, V., Arvai, J. & Kalof, L. Motivating Sustainable Food Choices. Environment and Behavior 46, 453–475 (2014).
  11. Kallbekken, S. & Sælen, H. ‘Nudging’ hotel guests to reduce food waste as a win–win environmental measure. Economics Letters 119, 325–327 (2013).
  12. Kunst, J. R. & Hohle, S. M. Meat eaters by dissociation: How we present, prepare and talk about meat increases willingness to eat meat by reducing empathy and disgust. Appetite 105, 758–774 (2016).
  13. Vanclay, J. K. et al. Customer Response to Carbon Labelling of Groceries. Journal of Consumer Policy 34, 153–160 (2011).
  14. Hansen, P. G., Schilling, M. & Malthesen, M. S. Nudging healthy and sustainable food choices: three randomized controlled field experiments using a vegetarian lunch-default as a normative signal. Journal of Public Health 43, 392–397 (2021).
  15. Fyhri, A., Karlsen, K. & Sundfør, H. B. Paint It Red – A Multimethod Study of the Nudging Effect of Coloured Cycle Lanes. Frontiers in Psychology 12, (2021).
  16. Benartzi, S. et al. Should Governments Invest More in Nudging? Psychological Science 28, 1041–1055 (2017).
  17. Kurz, V. Nudging to reduce meat consumption: Immediate and persistent effects of an intervention at a university restaurant. Journal of Environmental Economics and Management 90, 317–341 (2018).

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here