Literaturverzeichnis2019-07-18T11:37:11+02:00

Literaturverzeichnis

Sollte Ihnen ein inhaltlicher Fehler auffallen, so zögern Sie bitte nicht uns zu kontaktieren: info@klimawandel-buch.de

  1. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O. et al.]. (Cambridge University Press, 2014).
  2. Schönwiese, C.-D. Klimatologie. (UTB GmbH, 2013).
  1. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).
  2. ALLABY, M. greenhouse gas. A Dictionary of Earth Sciences 257 (2008).
  3. KONDRATYEV, K. J. & MOSKALENKO, N. I. The role of carbon dioxid and other minor gaseous components and aerosols in the radiation budget. in The Global Climate (ed. Houghton, J. T.) 225–233 (Cambridge University Press, 1984).
  4. Rahmstorf, S. & Schellnhuber, H. J. Der Klimawandel. (C.H.Beck, 2006).
  5. Brunetti, M. & Prodi, F. The climate system. EPJ Web Conf. 98, (2015).
  6. Roedel, W. & Wagner, T. Physik unserer Umwelt: Die Atmosphäre. (Springer-Verlag, 2011).
  7. WMO. WMO statement on the status of the global climate in 2010. (2011).
  1. Hupfer, P. Witterung und Klima: Eine Einführung in die Meteorologie und Klimatologie. (Springer-Verlag, 2005).
  2. Schönwiese, C.-D. Klimatologie. (UTB GmbH, 2013).
  3. Rahmstorf, S. & Schellnhuber, H. J. Der Klimawandel. (C.H.Beck, 2006).
  4. Brunetti, M. & Prodi, F. The climate system. EPJ Web Conf. 98, (2015).
  5. KONDRATYEV, K. J. & MOSKALENKO, N. I. The role of carbon dioxid and other minor gaseous components and aerosols in the radiation budget. in The Global Climate (ed. Houghton, J. T.) 225–233 (Cambridge University Press, 1984).
  6. Ditzel, P. C. & Tilly, J. Zum Hintergrund: Kyoto. in Casebook internationale Politik (ed. Müller, M. M.) 133–137 (VS Verlag für Sozialwissenschaften, 2011).
  7. WMO. WMO statement on the status of the global climate in 2010. (2011).
  1. BAKAN, S. & RASCHKE, E. Der natürliche Treibhauseffekt. Numerische Klimamodelle – Was können sie, wo müssen sie verbessert werden? (promet, 2002).
  2. Beer, J., Mende, W. & Stellmacher, R. The role of the sun in climate forcing. Quat. Sci. Rev. 19, 403–415 (2000).
  3. Dicke, R. H. Why are Sunspots Dark and Faculae Bright? Astrophys. J. 159, 25 (1970).
  4. Friis-Christensen, E. & Lassen, K. Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate. Science. 254, 698–700 (1991).
  5. Gray, L. J., Beer, J., Haigh, J. D. & Lockwood, M. Solar Influences on Climate. Rev. Geophys. 48, (2010).
  6. Bradley, R. S. Paleoclimatology: Reconstructing Climates of the Quaternary. (Elsevier/Academic Press, 2014).
  7. SILSO World Data Center. The International Sunspot Number. Int. Sunspot Number Mon. Bull. online Cat.
  8. Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, (2008).
  9. Martin-Puertas, C. et al. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397 (2012).
  10. Thieblemont, R., Matthes, K., Omrani, N.-E., Kodera, K. & Hansen, F. Solar forcing synchronizes decadal North Atlantic climate variability. Nature communications 6, (2015).
  11. McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science. 352, 444 LP-447 (2016).
  12. Zielinski, G. A. Use of paleo-records in determining variability within the volcanism–climate system. Quat. Sci. Rev. 19, 417–438 (2000).
  13. H., M. G. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks. Geophys. Res. Lett. 39, (2012).
  14. J., H., M., S. & R., R. Radiative forcing and climate response. J. Geophys. Res. Atmos. 102, 6831–6864 (1997).
  1. NASA. Clouds and the Energy Cycle. (1999).
  2. Krämer, M. & Stratmann, F. Wolkenforschung. (2015).
  3. Loeb, N. G. et al. Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget. J. Clim. 22, 748–766 (2009).
  1. Broecker, W. S. Thermohaline Circulation, the Achilles Heel of Our Climate System: Will Man-Made CO2 Upset the Current Balance? Science (80-. ). 278, 1582 LP-1588 (1997).
  2. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207 (2002).
  3. Lozier, M. S. Overturning in the North Atlantic. Ann. Rev. Mar. Sci. 4, 291–315 (2011).
  4. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453 (2000).
  5. Olbers, D., Willebrand, J. & Eden, C. Ocean Dynamics. (Springer-Verlag, 2012). doi:10.1007/978-3-642-23450-7
  6. Vellinga, M. & Wood, R. A. Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation. Clim. Change 54, 251–267 (2002).
  7. ACIA. Impacts of a Warming Artic: Arctic Climate Assessment Report. (Cambridge University Press, 2004).
  1. Feulner, G. & Kienert, H. Climate simulations of Neoproterozoic snowball Earth events: Similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations. Earth Planet. Sci. Lett. 404, 200–205 (2014).
  2. Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104 (2011).
  3. Friis-Christensen, E. & Lassen, K. Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate. Science. 254, 698–700 (1991).
  4. Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science. 348, 229 LP-232 (2015).
  5. Royer, D., A. Berner, R., Montañez, I., Tabor, N. & J. Beerling, D. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, (2004).
  6. Bergstrom, C. T. & Dugatkin, L. A. Evolution. (W. W. Norton & Company, Inc., 2012).
  7. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).
  1. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. (2018). Available at: http://www.ncdc.noaa.gov/cag/. (Accessed: 4th April 2018)
  1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  2. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. (2018). Available at: http://www.ncdc.noaa.gov/cag/. (Accessed: 4th April 2018)
  1. Andersen, S. O., Halberstadt, M. L. & Borgford-Parnell, N. Stratospheric ozone, global warming, and the principle of unintended consequences—An ongoing science and policy success story. J. Air Waste Manage. Assoc. 63, 607–647 (2013).
  2. McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198 (2011).
  3. British Antarctic Survey. Provisional mean total ozone at Halley between 1956 and 2017 February. (2017). Available at: https://legacy.bas.ac.uk/met/jds/ozone/. (Accessed: 5th April 2018)
  4. Susan, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 37, 275–316 (1999).
  5. Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810 (1974).
  6. Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43 (2011).
  7. Bolaji, B. O. & Huan, Z. Ozone depletion and global warming: Case for the use of natural refrigerant – a review. Renew. Sustain. Energy Rev. 18, 49–54 (2013).
  8. Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl. Acad. Sci. 104, 4814 LP-4819 (2007).
  9. World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2014, World Meteorological Organization, Global Ozone Research and Monitoring Project—Report No. 55. (2014).
  10. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  11. M., G. K., M., P. L., George, T., Yutian, W. & D., Z. M. The ozone hole indirect effect: Cloud‐radiative anomalies accompanying the poleward shift of the eddy‐driven jet in the Southern Hemisphere. Geophys. Res. Lett. 40, 3688–3692 (2013).
  1. IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O. et al.]. (Cambridge University Press, 2014).
  2. Raes, F. et al. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 34, 4215–4240 (2000).
  3. Sobottka, G. & Weber, A. Geometrische und Physikalische Eigenschaften von Human-Haar. (2003).
  4. N., T. I., C., T. A. & H., F. K. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. Atmos. 102, 23269–23275 (1997).
  5. F., E. T. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).
  6. Andreae, M. O. & Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Rev. 89, 13–41 (2008).
  7. G., A. A. et al. Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua. J. Geophys. Res. Atmos. 107, ACH 5-1-ACH 5-8 (2002).
  8. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  9. M., H. J. et al. The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C‐130 aircraft during SAFARI 2000. J. Geophys. Res. Atmos. 108, (2003).
  10. Schwartz, S. E. The whitehouse effect—Shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 27, 359–382 (1996).
  11. Sandradewi, J. et al. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos. Environ. 42, 101–112 (2008).
  12. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  13. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  14. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  15. Pieber, S. M. Organic Vapors from Combustion Emissions and their Oxidative Aging to Form Secondary Organic Aerosol Investigated Using Online Mass Spectrometry. (ETH Zürich, 2017). doi:10.3929/ethz-b-000218802
  1. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. (2018). Available at: http://www.ncdc.noaa.gov/cag/. (Accessed: 4th April 2018)
  2. SILSO World Data Center. The International Sunspot Number. Int. Sunspot Number Mon. Bull. online Cat.
  3. Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, (2008).
  4. Feulner, G. The Smithsonian solar constant data revisited: no evidence for a strong effect of solar activity in ground-based insolation data. Atmos. Chem. Phys. 11, 3291–3301 (2011).
  5. Lockwood, M. & Fröhlich, C. Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 2447 LP-2460 (2007).
  1. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. (2018). Available at: http://www.ncdc.noaa.gov/cag/. (Accessed: 4th April 2018)
  2. Etheridge, D.M., et al. Law Dome Ice Core 2000-Year CO2, CH4, and N2O Data. (2010).
  3. M., E. D. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).
  4. M., E. D., P., S. L., J., F. R. & L., L. R. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. Atmos. 103, 15979–15993 (1998).
  5. MacFarling Meure, C. et al. Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters – GEOPHYS RES LETT 331, (2006).
  6. MacFarling Meure, C. The natural and anthropogenic variations of carbon dioxide, methane and nitrous oxide during the Holocene from ice core analysis. (University of Melbourne, 2004).
  7. Ferretti, D. F. et al. Unexpected Changes to the Global Methane Budget over the Past 2000 Years. Science (80-. ). 309, 1714 LP-1717 (2005).
  8. M., T. C. et al. Reconstructing atmospheric histories from measurements of air composition in firn. J. Geophys. Res. Atmos. 107, ACH 15-1-ACH 15-13 (2002).
  9. A., S. G., M., E. D., M., T. C., J., F. P. & M., S. A. Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species. J. Geophys. Res. Atmos. 107, ACH 12-1-ACH 12-14 (2002).
  10. Langenfelds, R. L. et al. The Cape Grim air archive: The first seventeen years, 1978-1995. Baseline Atmos. Progr. Aust. 53–70 (1996).
  11. Langenfelds, R. L. et al. Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography. Baseline Atmos. Progr. Aust. 46–47 (2004).
  12. Langenfelds, R. L., Fraser, P. J., Steele, L. P. & Porter, L. W. Archiving of Cape Grim Air. Baseline Atmos. Progr. Aust. 48 (2004).
  13. Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).
  14. S., P. M., R., K. T., George, K. & Joyce, G. Is recent climate change across the United States related to rising levels of anthropogenic greenhouse gases? J. Geophys. Res. Atmos. 95, 16617–16637 (2012).
  15. Harries, J. E., Brindley, H. E., Sagoo, P. J. & Bantges, R. J. erratum: Increase in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature 410, 1124 (2001).
  16. Kaicun, W. & Shunlin, L. Global atmospheric downward longwave radiation over land surface under all‐sky conditions from 1973 to 2008. J. Geophys. Res. Atmos. 114, (2009).
  17. Roedel, W. & Wagner, T. Physik unserer Umwelt: Die Atmosphäre. (Springer-Verlag, 2011).
  18. Anderegg, W., Prall, J., Harold, J. & H Schneider, S. Expert Credibility in Climate Change. Proceedings of the National Academy of Sciences of the United States of America 107, (2010).
  1. J., J. et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. Ocean. 102, 26471–26487 (1997).
  2. A Dictionary of Earth Sciences. (Oxford University Press, 2008).
  3. Zielinski, G. A. et al. Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System. Science (80-. ). 264, 948 LP-952 (1994).
  4. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429 (1999).
  5. Jouzel, J. & Masson-Delmotte, V. EPICA Dome C Ice Core 800KYr deuterium data and temperature estimates. Supplement to: Jouzel, Jean; Masson-Delmotte, Valerie; Cattani, Olivier; Dreyfus, Gabrielle; Falourd, Sonia; Hoffmann, G; Minster, B; Nouet, J; Barnola, Jean-Marc; Chappellaz, Jrme A; Fischer, Hubertus; Gallet, J C; Johnsen, Sigfus J; Leuenberger, Markus; Loulergue, Laetitia; Luethi, D; Oerter, Hans; Parrenin, Frdric; Raisbeck, Grant M; Raynaud, Dominique; Schilt, Adrian; Schwander, Jakob; Selmo, Enrico; Souchez, Roland; Spahni, Renato; Stauffer, Bernhard; Steffensen, Jrgen Peder; Stenni, Barbara; Stocker, Thomas F; Tison, Jean-Louis; Werner, Martin; Wolff, Eric W (2007): Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793-797, https://doi.org/10.1126/science.1141038 (2007). doi:10.1594/PANGAEA.683655
  6. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters 42, (2014).
  7. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383 (2008).
  8. Parrenin, F. et al. Synchronous Change of Atmospheric CO2 and Antarctic Temperature During the Last Deglacial Warming. Science (80-. ). 339, 1060 LP-1063 (2013).
  9. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49 (2012).
  10. Dlugokencky, E. & Tans, P. NOAA/ESRL.Trends CO2. (2018). Available at: www.esrl.noaa.gov/gmd/ccgg/trends/. (Accessed: 4th April 2018)
  11. Dlugokencky, E. NOAA/ESRL.Trends CH4. (2018). Available at: www.esrl.noaa.gov/gmd/ccgg/trends_ch4. (Accessed: 4th April 2018)
  1. B., T. S. F. et al. Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res. Atmos. 107, ACL 10-1-ACL 10-24 (2002).
  2. Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nat. Geosci. 5, 31 (2011).
  3. Meehl, G. A. et al. Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate. J. Clim. 17, 3721–3727 (2004).
  4. P., G. N., K., A. V, M., F. G., F., S. J. & K., S. Improved constraints on 21st‐century warming derived using 160 years of temperature observations. Geophys. Res. Lett. 39, (2012).
  5. Ribes, A., Zwiers, F. W., Azaïs, J.-M. & Naveau, P. A new statistical approach to climate change detection and attribution. Clim. Dyn. 48, 367–386 (2017).
  6. Stone, D., Allen, M. R., Selten, F., Kliphuis, M. & Stott, P. A. The Detection and Attribution of Climate Change Using an Ensemble of Opportunity. J. Clim. 20, 504–516 (2007).
  7. Wigley, T. M. L. & Santer, B. D. A probabilistic quantification of the anthropogenic component of twentieth century global warming. Clim. Dyn. 40, 1087–1102 (2013).
  8. K., F. C. et al. High predictive skill of global surface temperature a year ahead. Geophys. Res. Lett. 40, 761–767 (2013).
  9. Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, (2008).
  10. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  11. Hawkins, E. & Sutton, R. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).
  12. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  13. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. 1535 (2013). doi:10.1017/CBO9781107415324
  14. Anderegg, W., Prall, J., Harold, J. & H Schneider, S. Expert Credibility in Climate Change. Proceedings of the National Academy of Sciences of the United States of America 107, (2010).
  1. Schönwiese, C.-D. Klimatologie. (UTB GmbH, 2013).
  2. MacFarling Meure, C. et al. Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters – GEOPHYS RES LETT 331, (2006).
  3. Brunetti, M. & Prodi, F. The climate system. EPJ Web Conf. 98, (2015).
  4. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  5. Malcolm, K., Run‐Lie, S., Nien‐Dak, S., Hillel, M. & G., B. R. Atmospheric lifetime and global warming potential of HFC‐245fa. J. Geophys. Res. Atmos. 104, 8173–8181 (1999).
  6. CDIAC. Recent Greenhouse Gas Concentrations. (2016). doi:10.3334/CDIAC/atg.032
  7. Dlugokencky, E. & Tans, P. NOAA/ESRL.Trends CO2. (2018). Available at: www.esrl.noaa.gov/gmd/ccgg/trends/. (Accessed: 4th April 2018)
  8. Dlugokencky, E. NOAA/ESRL.Trends CH4. (2018). Available at: www.esrl.noaa.gov/gmd/ccgg/trends_ch4. (Accessed: 4th April 2018)
  9. Dutton, G. S., Elkins, J. W. & Hall, B. D. Nitrous Oxide data from the NOAA/ESRL halocarbons in situ program. (2018). Available at: ftp://aftp.cmdl.noaa.gov/data/hats/n2o/insituGCs/CATS/monthly/spo_N2O_MM.dat. (Accessed: 5th April 2018)
  10. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  11. IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O. et al.]. (Cambridge University Press, 2014).
  12. Elrod, M. J. Greenhouse Warming Potentials from the Infrared Spectroscopy of Atmospheric Gases. J. Chem. Educ. 76, 1702 (1999).
  13. Shine, K. P., Fuglestvedt, J. S., Hailemariam, K. & Stuber, N. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases. Clim. Change 68, 281–302 (2005).
  14. IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O. et al.]. (Cambridge University Press, 2014).
  1. IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O. et al.]. (Cambridge University Press, 2014).
  2. SCHIMEL, D. S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1, 77–91 (2006).
  3. Le Quéré, C. et al. Global Carbon Budget 2017. Earth System Science Data 10, (2018).
  4. Berner, R. A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323 (2003).
  5. Bates, N. R. et al. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9, 2509–2522 (2012).
  6. Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J. & Karl, D. M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. 106, 12235 LP-12240 (2009).
  7. González-Dávila, M., Santana-Casiano, J. M., Rueda, M. J. & Llinás, O. The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 7, 3067–3081 (2010).
  8. MacFarling Meure, C. et al. Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters – GEOPHYS RES LETT 331, (2006).
  1. Le Quéré, C. et al. Global Carbon Budget 2017. Earth System Science Data 10, (2018).
  2. OECD/IEA. CO2 EMISSIONS FROM FUEL COMBUSTION (Highlights). (2017).
  3. Kaplan, J., Krumhardt, K. & Zimmermann, N. The Prehistoric and Preindustrial Deforestation of Europe. Quaternary Science Reviews 28, (2009).
  4. U.S. Department of Agriculture (USDA). U.S. Forest Resource Facts and Historical Trends. (2014).
  5. Weinstock, J. A. Rattan: Ecological balance in a borneo rainforest swidden. Econ. Bot. 37, 58–68 (1983).
  6. Geist, H. J. & Lambin, E. F. Proximate Causes and Underlying Driving Forces of Tropical DeforestationTropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52, 143–150 (2002).
  7. Wilcove, D. S. & Koh, L. P. Addressing the threats to biodiversity from oil-palm agriculture. Biodivers. Conserv. 19, 999–1007 (2010).
  8. M., F. P. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 19, 680–688 (2005).
  9. Vandermeer, J. H. & Perfecto, I. Breakfast of Biodiversity: The Political Ecology of Rain Forest Destruction. (Food First Books, 2013).
  10. UEFA. UEFA Stadium Infrastructure Regulations Edition 2010. (2010).
  11. FAO. Global Forest Resources Assessment 2010. (2010).
  12. Tinker, P. B., Ingram, J. S. I. & Struwe, S. Effects of slash-and-burn agriculture and deforestation on climate change. Agric. Ecosyst. Environ. 58, 13–22 (1996).
  13. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61 (2002).
  1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  2. Heede, R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Clim. Change 122, 229–241 (2014).
  3. Aydin, M. et al. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476, 198 (2011).
  4. Beauchemin, K. & M McGinn, S. Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil1. Journal of animal science 84, (2006).
  5. Scheutz, C. et al. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27, 409–455 (2009).
  6. IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook (Volume 2). Agriculture. (1996).
  7. Yacob, S., Ali Hassan, M., Shirai, Y., Wakisaka, M. & Subash, S. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci. Total Environ. 366, 187–196 (2006).
  8. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  9. Pomowski, A., Zumft, W. G., Kroneck, P. M. H. & Einsle, O. N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature 477, 234 (2011).
  10. Pelster, D. E. et al. Methane and Nitrous Oxide Emissions from Cattle Excreta on an East African Grassland. J. Environ. Qual. 45, 1531–1539 (2016).
  11. Minpeng, H., Dingjiang, C. & A., D. R. Modeling nitrous oxide emission from rivers: a global assessment. Glob. Chang. Biol. 22, 3566–3582 (2016).
  12. Kroeze, C., Dumont, E. & Seitzinger, S. P. New estimates of global emissions of N2O from rivers and estuaries. Environ. Sci. 2, 159–165 (2005).
  1. Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. & Peters, J. A. H. W. Trends in global CO2 emissions: 2016 Report. (2016).
  2. EDGARv4.3.2; European Commission; Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR), release version 4.3.2. (2016).
  3. World Resources Institute. CAIT Climate Data Explorer. (2015). Available at: http://cait.wri.org. (Accessed: 4th May 2018)
  4. Steininger, K., Lininger, C., Meyer, L., Muñoz, P. & Schinko, T. Multiple carbon accounting to support just and effective climate policies. Nature Climate Change 6, (2015).
  1. Harries, J. E., Brindley, H. E., Sagoo, P. J. & Bantges, R. J. Increase in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature 410, 1124 (2001).
  2. Kaicun, W. & Shunlin, L. Global atmospheric downward longwave radiation over land surface under all‐sky conditions from 1973 to 2008. J. Geophys. Res. Atmos. 114, (2009).
  3. Stephens, G. L. et al. The Global Character of the Flux of Downward Longwave Radiation. J. Clim. 25, 2329–2340 (2011).
  4. Santer, B. D. et al. Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl. Acad. Sci. 110, 17235 LP-17240 (2013).
  5. Solomon, S. et al. IPCC (2007): Climate Change The Physical Science Basis. (Cambridge University Press, 2007).
  1. Mayhew, S. A Dictionary of Geography. (Oxford University Press, 2015). doi:10.1093/acref/9780199680856.001.0001
  2. (2008). ALLABY, M.(Ed.), A Dictionary of Earth Sciences. : Oxford University Press. Retrieved 27 Dec. 2017, from http://www.oxfordreference.com/view/10.1093/acref/9780199211944.001.0001/acref-9780199211944.
  3. Van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. (National Snow and Ice Data Center/ World Data Center for Glaciology, 1998).
  4. McGraw-Hill. Dictionary of Earth Science. (McGraw-Hill Companies, 2003). doi: 10.1036/0071417982
  1. Alfred-Wegener-Institut, H.-Z. für P. M. (AWI). Was ist Meereis? Available at: http://www.meereisportal.de/meereiswissen/was-ist-meereis/. (Accessed: 29th March 2018)
  2. Kwok, R. & Cunningham, G. F. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, (2015).
  3. Alfred-Wegener-Institut, H.-Z. für P. M. (AWI). Meereisdicke. Available at: http://www.meereisportal.de/meereisbeobachtung/beobachtungsgroessen/meereisdicke/. (Accessed: 29th March 2018)
  4. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).
  5. GISTEMP Team. GISS Surface Temperature Analysis (GISTEMP). (Zit.: GISTEMP Team, 2017: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2017-06-30 at https://data.giss.nasa.gov/gistemp/.)
  6. Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2002, updated daily. Sea Ice Index, Version 2.1. [September 1979 to 2016, N: 90, S: 30.98, E: 180, W: -180]. Boulder, Colorado USA: National Snow and Ice Data Center. http://dx.doi.org/10.7265/N5QJ7F7W. [05.07.2017]
  7. Österreich. Zahlen. Daten. Fakten. (STATISTIK AUSTRIA, 2017).
  8. Zhang, J. L. & Rothrock, D. A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Am. Meteorol. Soc. 131, 845–861 (2003).
  9. Schweiger, A. et al. Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res. Ocean. 116, 1–21 (2011).
  10. Statistisches Bundesamt. Geografie und Klima. Statistisches Jahrbuch (2017).
  1. Stephens, G. L. et al. The albedo of Earth. Rev. Geophys. 53, 141–163 (2015).
  2. Kappas, M. Klimatologie. Klimaforschung im 21. Jahrhundert – Herausforderung für Natur- und Sozialwissenschaften. (Spektrum Akademischer Verlag, 2009).
  3. Alfred-Wegener-Institut, H.-Z. für P. M. (AWI). Meereis und Strahlungsbilanz. (2017). Available at: http://www.meereisportal.de/meereiswissen/die-globale-bedeutung-von-meereis/wechselwirkungen-von-meereis-mit-anderen-komponenten-des-klimasystems/meereis-und-strahlungsbilanz/. (Accessed: 1st July 2017)
  4. Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI). Albedo. Available at: http://www.eskp.de/albedo/. (Accessed: 1st July 2017)
  1. National Snow and Ice Data Center. Glacier Types: Ice caps. (2017). Available at: https://nsidc.org/cryosphere/glaciers/gallery/icecaps.html. (Accessed: 1st December 2017)
  2. Vaughan, D.G., J.C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen and T. Zhang, 2013: Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  3. GISTEMP Team. GISS Surface Temperature Analysis (GISTEMP). (Zit.: GISTEMP Team, 2017: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2017-06-30 at https://data.giss.nasa.gov/gistemp/.)
  4. Williams, R.S., Jr., and Ferrigno, J.G., eds., 2012, State of the Earth’s cryosphere at the beginning of the 21st century–Glaciers, global snow cover, floating ice, and permafrost and periglacial environments: U.S. Geological Survey Professional Paper 1386–A, 546 p. (Also available at https://pubs.usgs.gov/pp/p1386a.)
  1. Vaughan, D.G., J.C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen and T. Zhang, 2013: Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  2. Bamber, J. L. et al. A new bed elevation dataset for Greenland. Cryosph. 7, 499–510 (2013).
  3. Shepherd, A. et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science (80-. ). 338, 1183 LP-1189 (2012).
  4. 1)Wiese, D. N., D.-N. Yuan, C. Boening, F. W. Landerer, and M. M. Watkins (2016) JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent         2)Water Height RL05M.1 CRI Filtered Version 2., Ver. 2., PO.DAAC, CA, USA. Dataset accessed [2017-06-17] at http://dx.doi.org/10.5067/TEMSC-2LCR5.
  5. Seale, A., Christoffersen, P., Mugford, R. I. & O’Leary, M. Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf. 116, n/a-n/a (2011).
  6. Benn, D. I., Cowton, T., Todd, J. & Luckman, A. Glacier Calving in Greenland. Curr. Clim. Chang. Reports 3, 282–290 (2017).
  7. Tedesco, M. et al. Greenland Ice Sheet. in Arctic Report Card 2016 (2016).
  8. Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J. & Dahle, C. Revisiting the contemporary sea-level budget on global and regional scales. Proc. Natl. Acad. Sci. 113, 1504 LP-1509 (2016).
  9. (2008). ALLABY, M.(Ed.), A Dictionary of Earth Sciences. : Oxford University Press. Retrieved 27 Dec. 2017, from http://www.oxfordreference.com/view/10.1093/acref/9780199211944.001.0001/acref-9780199211944.
  1. Vaughan, D.G., J.C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen and T. Zhang, 2013: Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  2. National Snow and Ice Data Center. Quick Facts on Ice Shelves. (2017). Available at: https://nsidc.org/cryosphere/quickfacts/iceshelves.html. (Accessed: 28th December 2017)
  3. Sasgen, I. et al. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosph. 7, 1499–1512 (2013).
  4. Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2002, updated daily. Sea Ice Index, Version 2.1. [1979 to 2016, N: -39.23, S: -90, E: 180, W: -180]. Boulder, Colorado USA: National Snow and Ice Data Center. http://dx.doi.org/10.7265/N5QJ7F7W. [30.07.2017]
  5. Frieler, K. et al. Consistent evidence of increasing Antarctic accumulation with warming. 2–6 (2015). doi:10.1038/NCLIMATE2574
  6. Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer and A.S. Unnikrishnan, 2013: Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  7. Sasgen, I. et al. Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA). Geophys. J. Int. 211, 1534–1553 (2017).
  8. Schoof, C. (2007), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.
  9. Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290 (2016).
  10. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science (80-. ). 348, 327 LP-331 (2015).
  11. Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A. & LeBrocq, A. M. Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science (80-. ). 324, 901 LP-903 (2009).
  1. Vaughan, D.G., J.C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen and T. Zhang, 2013: Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  2. Noerdlinger, P. D. & Brower, K. R. The melting of floating ice raises the ocean level. Geophys. J. Int. 170, 145–150 (2007).
  1. Van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. (National Snow and Ice Data Center/ World Data Center for Glaciology, 1998).
  2. Schaefer, K., Lantuit, H., Romanovsky, V. & Schuur, E. A. G. Policy Implications of Warming Permafrost. (United Nations Environment Programme, 2012).
  3. Bodin, X. et al. Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. J. Alp. Res. 103–2, (2015).
  4. Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. & Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 31, 47–68 (2008).
  5. T. Zhang, J. Smith 2006. Northern Hemisphere Seasonal and Intermittent Frozen Ground Areas 1901-2001, Version 1. [N: 90, S: 0, E: 180, W: -180]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. [17.07.2017].
  6. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171 (2015).
  7. Zimov, B. W. A. and J. B. J. and E. A. G. S. and F. S. C. I. I. I. and W. B. B. and M. S. B.-H. and H. E. E. and M. D. F. and T. K. H. and T. N. H. and M. C. M. and A. D. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 34014 (2016).
  1. Arctic Monitoring and Assessment Programme (AMAP). Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost. SWIPA 2011 Overview Report. (Arctic Monitoring and Assessment Programme (AMAP), 2012).
  2. Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. & Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 31, 47–68 (2008).
  3. Shan, W., Guo, Y., Hu, Z., Wang, C. & Zhang, C. Landslides Caused by Climate Change and Groundwater Movement in Permafrost Mountain. (InTech, 2016). doi:10.5772/63068
  4. Bodin, X. et al. Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. J. Alp. Res. 103–2, (2015).
  5. Günther, F., Overduin, P. P., Sandakov, A. V, Grosse, G. & Grigoriev, M. N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10, 4297–4318 (2013).
  6. Lantuit, H. et al. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. in Estuaries and Coasts (2012) 35:383-400 (2011). doi:10.1007/s12237-010-9362-6
  7. Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, n/a-n/a (2009).
  1. Schönwiese, C.-D. Klimatologie. (UTB GmbH, 2013).
  2. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453 (2000).
  3. Le Quéré, C. et al. Global Carbon Budget 2017. Earth System Science Data 10, (2018).
  4. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  2. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. (2018). Available at: http://www.ncdc.noaa.gov/cag/. (Accessed: 4th April 2018)
  3. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (Cambridge University Press, 2013). doi:10.1017/CBO9781107415324
  4. Le Quéré, C. et al. Global Carbon Budget 2017. Earth System Science Data 10, (2018).
  5. Ruben, H., Allen, M. J., Derek, M. & Serge, P. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2013).
  6. Joos, F. Growing feedback from ocean carbon to climate. Nature 522, 295 (2015).
  7. Friedlingstein, P. et al. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 19, 3337–3353 (2006).
  8. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean Deoxygenation in a Warming World. Ann. Rev. Mar. Sci. 2, 199–229 (2009).
  1. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
  2. Hall, A. & Manabe, S. The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming. J. Clim. 12, 2327–2346 (1999).
  3. Philipona, R., Dürr, B., Ohmura, A. & Ruckstuhl, C. Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys. Res. Lett. 32, (2005).
  1. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series. (2018). Available at: http://www.ncdc.noaa.gov/cag/. (Accessed: 4th April 2018)
  2. Lombard, A., Cazenave, A., Le Traon, P.-Y. & Ishii, M. Contribution of thermal expansion to present-day sea-level change revisited. Glob. Planet. Change 47, 1–16 (2005).
  3. United States Environmental Protection Agency. Climate Change Indicators: Sea Level. (2018). Available at: https://www.epa.gov/climate-indicators/climate-change-indicators-sea-level. (Accessed: 5th April 2018)
  4. Chen, X. et al. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang. 7, 492 (2017).
  5. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (2013). doi:10.1017/CBO9781107415324
  6. D., B. B., S., C. P., W., H. D., T., M. G. & D., R. R. On the ‘Cal‐Mode’ Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. J. Geophys. Res. Ocean. 122, 8371–8384 (2017).
  7. Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389 (2012).
  1. Henry, L.-A. et al. Global ocean conveyor lowers extinction risk in the deep sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 88, 8–16 (2014).
  2. Bryden, H. L., Longworth, H. R. & Cunningham, S. A. Slowing of the Atlantic meridional overturning circulation at 25° N. Nature 438, 655 (2005).
  3. Delworth, T. The potential for abrupt change in the Atlantic Meridional Overturning Circulation. Abrupt Climate Change (2008).
  4. Kuhlbrodt, T. et al. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45, (2007).
  5. Latif, M. et al. Zukunft der Golfstrom zirkulation. (2017).
  6. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 5, 475 (2015).
  7. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (2013). doi:10.1017/CBO9781107415324
  8. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xi]. (2013). doi:10.1017/CBO9781107415324
  9. Wang, C., Zhang, L., Lee, S.-K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Chang. 4, 201 (2014).
  10. Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, (2017).
  11. Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).
  1. Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups 1 and 2 of the Intergovernmental Panel on Climate Change (IPCC) 109–230 (Cambridge University Press, 2012).
  1. Coumou, D., Robinson, A. & Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Clim. Change 118, 771–782 (2013).
  2. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2, 491 (2012).
  3. Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. 109, E2415–E2423 (2012).
  4. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
  5. Martinez, J., Vega-Garcia, C. & Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manage. 90, 1241–1252 (2009).
  6. National Academies of Sciences, Engineering, and & Medicine. Attribution of Extreme Weather Events in the Context of Climate Change. (The National Academies Press, 2016). doi:10.17226/21852
  7. Hansen, J. & Sato, M. Regional climate change and national responsibilities. Environ. Res. Lett. 11, 34009 (2016).
  1. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
  2. Lehmann, J., Coumou, D. & Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Change 132, 501–515 (2015).
  3. Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming. J. Clim. 23, 4651–4668 (2010).
  4. Kirtman, B., S.B. Power, J.A. Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J. Doblas-Reyes, A.M. Fiore, M. Kimoto, G.A. Meehl, M. Prather, A. Sarr, C. Schär, R. Sutton, G.J. van Oldenborgh, G. Vecchi and H.J. Wang, 2013: Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US
  5. Donat, M. G., Lowry, A. L., Alexander, L. V, O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 6, 508 (2016).
  6. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 5, 560 (2015).
  7. Volosciuk, C. et al. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe. Sci. Rep. 6, 32450 (2016).
  1. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17 (2013).
  2. Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Chang. 2, 45–65 (2011).
  3. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52 (2012).
  1. National Academies of Sciences, Engineering, and & Medicine. Attribution of Extreme Weather Events in the Context of Climate Change. (The National Academies Press, 2016). doi:10.17226/21852
  2. Kossin, J. P., Olander, T. L. & Knapp, K. R. Trend Analysis with a New Global Record of Tropical Cyclone Intensity. J. Clim. 26, 9960–9976 (2013).
  3. Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157 (2010).
  4. Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483 (1987).
  5. Tory, K. J. & Dare, R. A. Sea Surface Temperature Thresholds for Tropical Cyclone Formation. J. Clim. 28, 8171–8183 (2015).
  6. Knutson, T. R. & Tuleya, R. E. Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization. J. Clim. 17, 3477–3495 (2004).
  7. Wang, C. & Lee, S.-K. Global warming and United States landfalling hurricanes. Geophys. Res. Lett. 35, n/a-n/a (2008).
  8. BENGTSSON, L. et al. How may tropical cyclones change in a warmer climate? Tellus A 59, 539–561 (2007).
  1. Schefczyk, L. & Heinemann, G. Climate change impact on thunderstorms: Analysis of thunderstorm indices using high-resolution regional climate simulations. Meteorol. Zeitschrift 26, 409–419 (2017).
  2. NatCatSERVICE. Munich Re. 5 Costliest convective storm events worldwide 1980 – 2016 ordered by nominal overall losses. (2017). Available at: http://natcatservice.munichre.com/topten/1?filter=eyJ5ZWFyRnJvbSI6MTk4MCwieWVhclRvIjoyMDE2LCJmb2N1c0FuYWx5c2lzSWQiOjIsImZvY3VzQW5hbHlzaXNBcmVhSWQiOjh9&type=1. (Accessed: 5th December 2017)
  3. Schönwiese, C.-D. Klimatologie. (UTB GmbH, 2013).
  4. Houze Jr., R. A. Chapter 7 – Basic Cumulus Dynamics. in Cloud Dynamics Volume 104, 165–185 (Academic Press, 2014).
  5. Weisman, M. L. & Klemp, J. B. The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Mon. Weather Rev. 110, 504–520 (1982).
  6. Sander, J. Extremwetterereignisse im Klimawandel – Bewertung der derzeitigen und zukünftigen Gefährdung. (2011).
  7. Mohr, S. & Kunz, M. Recent trends and variabilities of convective parameters relevant for hail events in Germany and Europe. Atmos. Res. 123, 211–228 (2013).
  8. Kunz, M., Mohr, S. & Werner, P. Niederschlag. in Klimawandel in Deutschland 57–66 (G. Brasseuer, D. Jacob, S. Schuck-Zöller, 2017). doi:DOI 10.1007/978-3-662-50397-3_7
  9. Diffenbaugh, N. S., Scherer, M. & Trapp, R. J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. 110, 16361–16366 (2013).
  10. Mohr, S., Kunz, M. & Keuler, K. Development and application of a logistic model to estimate the past and future hail potential in Germany. J. Geophys. Res. Atmos. 120, 3939–3956 (2015).
  1. (2008). ALLABY, M.(Ed.), A Dictionary of Earth Sciences. : Oxford University Press. Retrieved 27 Dec. 2017, from http://www.oxfordreference.com/view/10.1093/acref/9780199211944.001.0001/acref-9780199211944.
  2. Lexikon der Biologie. Phänologie. Spektrum Akademischer Verlag, Heidelberg (1999). Available at: http://www.spektrum.de/lexikon/biologie/phaenologie/50876. (Accessed: 29th December 2017)
  3. Rittner, D. & McCabe, T. L. Encyclopedia of Biology. (Facts on File, 2004).
  4. Klotz, S. & Settele, J. Biodiversität. in Klimawandel in Deutschland 151–160 (G. Brasseuer, D. Jacob, S. Schuck-Zöller, 2017). doi:0.1007/978-3-662-50397-3_15
  5. Secretariat of the Convention on Biological Diversity (2005). Handbook of the Convention on Biological Diversity Including its Cartagena Protocol on Biosafety, 3rd edition, (Montreal, Canada).
  1. Lexikon der Biologie. Phänologie. Spektrum Akademischer Verlag, Heidelberg (1999). Available at: http://www.spektrum.de/lexikon/biologie/phaenologie/50876. (Accessed: 29th December 2017)
  2. THACKERAY, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 16, 3304–3313 (2010).
  3. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57 (2003).
  4. Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reporductive success in birds. in Effects of Climate Change on Birds 113–128 (Oxford University Press, 2010).
  5. Phänologie Daten DWD.
  6. PARMESAN, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 13, 1860–1872 (2007).
  7. Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).
  8. GRACE, J., BERNINGER, F. & NAGY, L. Impacts of Climate Change on the Tree Line. Ann. Bot. 90, 537–544 (2002).
  9. Kullman, L. Rapid Recent Range-Margin Rise of Tree and Shrub Species in the Swedish Scandes. J. Ecol. 90, 68–77 (2002).
  10. Hufnagel, L. & Ágnes, G. IMPACTS OF CLIMATE CHANGE ON VEGETATION DISTRIBUTION NO. 2-CLIMATE CHANGE INDUCED VEGETATION SHIFTS IN THE NEW WORLD. Applied Ecology and Environmental Research 12, (2014).
  11. Chan, D. & Wu, Q. Significant anthropogenic-induced changes of climate classes since 1950. Sci. Rep. 5, 13487 (2015).
  12. Dahinden, F., Fischer, E. M. & Knutti, R. Future local climate unlike currently observed anywhere. Environ. Res. Lett. 12, 84004 (2017).
  1. Klotz, S. & Settele, J. Biodiversität. in Klimawandel in Deutschland 151–160 (G. Brasseuer, D. Jacob, S. Schuck-Zöller, 2017). doi:0.1007/978-3-662-50397-3_15
  2. Karell, P., Ahola, K., Karstinen, T., Valkama, J. & Brommer, J. E. Climate change drives microevolution in a wild bird. Nat. Commun. 2, 208 (2011).
  3. Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography (Cop.). 40, 1426–1435 (2017).
  4. Jakoby, O. Borkenkäfer im Klimawandel. (2015). Available at: https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/08/borkenkaefer-im-klimawandel.html. (Accessed: 29th December 2017)
  5. Økland, B., Netherer, S. & Marini, L. The Eurasian Spruce Bark Beetle: The Role of Climate. in Climate Change and Insect Pests (eds. Björkman, C. & Niemelä, P.) 202–219 (CAB International, 2015).
  6. Jakoby, O., Wermelinger, B., Stadelann, G. & Lischke, H. Borkenkäfer im Klimawandel – Modellierung des künftigen Befallsrisikos durch den Buchdrucker (Ips typographus). (Eidg. Forschungsanstalt WSL, 2015).
  7. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science (80-. ). 333, 1024 LP-1026 (2011).
  8. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145 (2004).
  9. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479 (2011).
  10. Roth, T., Plattner, M. & Amrhein, V. Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude. PLoS One 9, e82490 (2014).
  1. Rittner, D. & McCabe, T. L. Encyclopedia of Biology. (Facts on File, 2004).
  2. Klotz, S. & Settele, J. Biodiversität. in Klimawandel in Deutschland 151–160 (G. Brasseuer, D. Jacob, S. Schuck-Zöller, 2017). doi:0.1007/978-3-662-50397-3_15
  3. Secretariat of the Convention on Biological Diversity (2005). Handbook of the Convention on Biological Diversity Including its Cartagena Protocol on Biosafety, 3rd edition, (Montreal, Canada).
  4. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574 (2015).
  5. Liu, X., Lyu, S., Zhou, S. & Bradshaw, C. J. A. Warming and fertilization alter the dilution effect of host diversity on disease severity. Ecology 97, 1680–1689 (2016).
  6. Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–92 (2011).
  7. Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629 (2006).
  8. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
  9. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59 (2012).
  10. Alcamo, J. et al. Ecosystems and human well-being: a framework for assessment. (Island Press, 2003).
  11. Scholes, R. J. Climate change and ecosystem services. Wiley Interdiscip. Rev. Clim. Chang. 7, 537–550 (2016).
  1. Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
  2. Stewart, J. A. E., Wright, D. H. & Heckman, K. A. Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS One 12, e0181834 (2017).
  3. Chapman, J. A., Flux, J. & International Union for Conservation of Nature and Natural Resources. Lagomorph Specialist Group. Rabbits, hares and pikas: status survey and conservation action plan. (Internatioal Union for Conservation of Nature and Natural Resources. Lagomorph Specialist Group, 1990).
  4. Smith, A. T. & Beever, E. Ochotona princeps. The IUCN Red List of Threatened Species 2016: e T41267A45184315. (2016). Available at: http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41267A45184315.en. (Accessed: 30th December 2017)
  5. BEEVER, E. A., RAY, C., WILKENING, J. L., BRUSSARD, P. F. & MOTE, P. W. Contemporary climate change alters the pace and drivers of extinction. Glob. Chang. Biol. 17, 2054–2070 (2011).
  6. Beever, E. A. et al. Pika (Ochotona princeps) losses from two isolated regions reflect temperature and water balance, but reflect habitat area in a mainland region. J. Mammal. 97, 1495–1511 (2016).
  7. Stewart, J. A. E. et al. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J. Biogeogr. 42, 880–890 (2015).
  8. Armitage, K. Climate change and the conservation of marmots. Nat. Sci. 5, 36–43 (2013).
  9. Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561 LP-2569 (2005).
  10. McKinney, A. M. et al. Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-season nectar resources. Ecology 93, 1987–1993 (2012).
  1. IUCN Polar Bear Specialist Group. Global polar bear population estimates. (2014). Available at: http://pbsg.npolar.no/en/status/pb-global-estimate.html. (Accessed: 30th December 2017)
  2. IUCN Polar Bear Specialist Group. Summary of polar bear population status per 2017. (2017). Available at: http://pbsg.npolar.no/en/status/status-table.html. (Accessed: 30th December 2017)
  3. Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).
  4. Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).
  5. Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).
  6. Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955 (2010).
  7. REGEHR, E. V, LUNN, N. J., AMSTRUP, S. C. & STIRLING, I. A. N. Effects of Earlier Sea Ice Breakup on Survival and Population Size of Polar Bears in Western Hudson Bay. J. Wildl. Manage. 71, 2673–2683 (2007).
  8. Molnár, P. K., Derocher, A. E., Klanjscek, T. & Lewis, M. A. Predicting climate change impacts on polar bear litter size. Nat. Commun. 2, 186 (2011).
  9. IUCN Polar Bear Specialist Group. M´Clintock Channel (MC). (2017). Available at: http://pbsg.npolar.no/en/status/populations/mclintock-channel.html. (Accessed: 30th December 2017)
  10. IUCN Polar Bear Specialist Group. Southern Hudson Bay (SH). (2017). Available at: http://pbsg.npolar.no/en/status/populations/southern-hudson-bay.html. (Accessed: 30th December 2017)
  1. Connell, J. H. Diversity in Tropical Rain Forests and Coral Reefs. Science (80-. ). 199, 1302–1310 (1978).
  2. Hoegh-Guldberg, O. et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science (80-. ). 318, 1737 LP-1742 (2007).
  3. ALLABY, M. A Dictionary of Earth Sciences. A Dictionary of Earth Sciences (2008). doi:10.1093/acref/9780199211944.001.0001
  4. Jokiel, P. L. Temperature Stress and Coral Bleaching BT – Coral Health and Disease. in (eds. Rosenberg, E. & Loya, Y.) 401–425 (Springer Berlin Heidelberg, 2004). doi:10.1007/978-3-662-06414-6_23
  5. Ruben, H., Allen, M. J., Derek, M. & Serge, P. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2013).
  6. B., S. T., W., G. P., L., M. J., T., T. L. & Joanna, G. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673 (2014).
  7. ARC Centre of Excellence for Coral Reef Studie. 2016 global coral bleaching Never a greater need for coral reef research. (2016).
  1. World Bank. Population, total. (2018). Available at: https://data.worldbank.org/indicator/SP.POP.TOTL. (Accessed: 20th February 2018)
  2. Field, C. B. et al. Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group 2 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
  1. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2, 491 (2012).
  2. Zacharias, S. (2012) Literaturstudie zum Einfluss des Wetters auf die menschliche Gesundheit. Bericht zum Forschungsvorhaben des Umweltbundesamtes UFOPLAN 3711 61 238.
  3. Crimmins, A. et al. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. (U.S. Global Change Research Program, 2016).
  4. Basagana, X. et al. Heat waves and cause-specific mortality at all ages. Epidemiology 22, 765–772 (2011).
  5. Kuttler, W. Climate change in urban areas, Part 1, Effects. Environ. Sci. Eur. 23, 11 (2011).
  6. Ackermann, R. O., Aggarwal, S., Dixon, J. R., Fitzgerald, A. D. & Hanrahan, D. C. Pollution prevention and abatement handbook 1998. (World Bank Group, 1999).
  7. Fleischhauer, M., Lindner, C., Othmer, F., Schmitt, H. & Steiner, H. Handlungsfeld Menschliche Gesundheit. in Vulnerabilität Deutschlands gegenüber dem Klimawandel 602–633 (Umweltbundesamt, 2015).
  8. Bunz, M. & Mücke, H.-G. Klimawandel – physische und psychische Folgen. Bundesgesundheitsblatt – Gesundheitsforsch. – Gesundheitsschutz 60, 632–639 (2017).
  9. Eis, D., Helm, D., Laußmann, D. & Stark, K. Klimawandel und Gesundheit – Ein Sachstandsbericht. (Robert Koch-Institut, 2010).
  10. Augustin, J. et al. Gesundheit. in Klimawandel in Deutschland 137–150 (G. Brasseuer, D. Jacob, S. Schuck-Zöller, 2017). doi:10.1007/978-3-662-50397-3_14
  11. DARA. Climate Vulnerability Monitor 2nd Edition. A Guide to the Cold Calculus of a Hot Planet. (Fundación DARA Internacional, 2012).
  1. Crimmins, A. et al. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. (U.S. Global Change Research Program, 2016).
  2. Searle, K. & Gow, K. Do concerns about climate change lead to distress? Int. J. Clim. Chang. Strateg. Manag. 2, 362–379 (2010).
  3. Bunz, M. Psychosoziale Auswirkungen des Klimawandels. in Umwelt und Mensch – Informationsdienst 02/2016 30–37 (Umweltbundesamt, 2016).
  4. Gifford, E. & Gifford, R. The largely unacknowledged impact of climate change on mental health. Bull. At. Sci. 72, 292–297 (2016).
  5. Marques, A., Nunes, M. L., Moore, S. K. & Strom, M. S. Climate change and seafood safety: Human health implications. Food Res. Int. 43, 1766–1779 (2010).
  6. Erdner, D. L. et al. Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms. Environ. Health 7 Suppl 2, S2 (2008).
  7. Eis, D., Helm, D., Laußmann, D. & Stark, K. Klimawandel und Gesundheit – Ein Sachstandsbericht. (Robert Koch-Institut, 2010).
  8. Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J. 6, 21–30 (2012).
  9. Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).
  10. Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Chang. 3, 73 (2012).
  11. Costello, A. et al. Managing the health effects of climate change. Lancet 373, 1693–1733 (2017).
  1. Kössel, H., Wülker, W. & Bonk, M. Vektoren. Lexikon der Biologie. Spektrum Akad. Verlag, Heidelb. (1999).
  2. Ebi, K. L. & Nealon, J. Dengue in a changing climate. Environ. Res. 151, 115–123 (2016).
  3. Campbell-Lendrum, D., Manga, L., Bagayoko, M. & Sommerfeld, J. Climate change and vector-borne diseases: what are the implications for public health research and policy? Philos. Trans. R. Soc. B Biol. Sci. 370, 20130552 (2015).
  4. Control, E. C. for D. P. and. Guidelines for the surveillance of invasive mosquitoes in Europe. (ECDC, 2012). doi:10.2900/61134
  5. Caminade, C. et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface (2012).
  6. Waldock, J. et al. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog. Glob. Health 107, 224–241 (2013).
  7. Morin, C. W., Comrie, A. C. & Ernst, K. Climate and Dengue Transmission: Evidence and Implications. Environ. Health Perspect. 121, 1264–1272 (2013).
  8. Colón-González, F. J., Fezzi, C., Lake, I. R. & Hunter, P. R. The Effects of Weather and Climate Change on Dengue. PLoS Negl. Trop. Dis. 7, e2503 (2013).
  1. Kuttler, W. Climate Change on the Urban Scale – Effects and Counter-Measures in Central Europe. in Human and Social Dimensions of Climate Change (ed. Chhetri, N.) 105–142 (InTech, 2012). doi:10.5772/50867
  2. Kuttler, W. Climate change in urban areas, Part 1, Effects. Environ. Sci. Eur. 23, 11 (2011).
  3. Akbari, H. Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation. First International Conference on Passive and Low Energy Cooling for the Built Environment (2005).
  4. Schönwiese, C.-D. Klimatologie. (UTB GmbH, 2013).
  5. Kurn, D. M., Bretz, S. E., Huang, B. & Akbari, H. The potential for reducing urban air temperatures and energy consumption through vegetative cooling. (1994).
  6. Baumüller, J. Wie verändert sich das Stadtklima. in Warnsignal Klima: Gefahren für Pflanzen, Tiere und Menschen. 2. Auflage (Lozán, J. L., Grassl, H., Karbe, L. & G. Jendritzky, 2014).
  7. Okamoto-Mizuno, K. & Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 31, 14 (2012).
  8. Dijk, D.-J. Regulation and functional correlates of slow wave sleep. J. Clin. sleep Med. JCSM  Off. Publ. Am.  Acad. Sleep Med. 5, S6-15 (2009).
  9. Santamouris, M., Cartalis, C., Synnefa, A. & Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 98, 119–124 (2015).
  1. Hatfield, J. L. et al. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 103, 351–370 (2011).
  2. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. 106, 15594–15598 (2009).
  3. Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Chang. 12, 197–202 (2002).
  4. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84 (2016).
  5. Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao and P. Thornton, 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  6. Taub, D. R. Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants. Nat. Educ. Knowl. 3, (2010).
  7. Scholes, R. J. Climate change and ecosystem services. Wiley Interdiscip. Rev. Clim. Chang. 7, 537–550 (2016).
  8. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO<sub>2</sub> Concentrations. Science (80-. ). 312, 1918 LP-1921 (2006).
  9. Taub, D. R., MILLER, B. & ALLEN, H. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob. Chang. Biol. 14, 565–575 (2008).
  10. Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139 (2014).
  11. Olesen, J. E. Agriculture. in Climate change, impacts and vulnerability in Europe 2016. An indicator-based report 424 (European Environment Agency, 2017). doi:10.2800/534806
  12. Trnka, M. et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 17, 2298–2318 (2011).
  13. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. 111, 3268–3273 (2014).
  14. McGrath, J. & Lobell, D. B. Regional disparities in the CO 2 fertilization effect and implications for crop yields. Environ. Res. Lett. 8, 14054 (2013).
  15. Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 34032 (2012).
  1. Internal Displacement Monitoring Centre (IDMC). Global Report on Internal Displacement. (2017).
  2. Feng, S., Krueger, A. B. & Oppenheimer, M. Linkages among climate change, crop yields and Mexico–US cross-border migration. Proc. Natl. Acad. Sci. 107, 14257 LP-14262 (2010).
  3. Global Humanitarian Forum. Human Impact Report: Climate Change – The Anatomy of a Silent Crisis. (2009).
  4. Raleigh, C., Jordan, L. & Salehyan, I. Assessing the Impact of Climate Change on Migration and Conflict. (2008).
  5. International Organization for Migration (IOM). Making mobility work for adaptation to environmental changes. Results from the MECLEP global research. (2017).
  6. Felgentreff, C. & Geiger, M. Klima und Umwelt als Determinanten räumlicher Mobilität? in IMIS-Beitrgäge. Heft 44/2013. Themenheft: Migration und Umwelt (Vorstand des Instituts für Migrationsforschung und Interkulturelle Studien (IMIS) der Universität Osnabrück, 2013).
  7. Otto, F. E. L. Attribution of Weather and Climate Events. Annu. Rev. Environ. Resour. 42, 627–646 (2017).
  8. Adger, W.N., J.M. Pulhin, J. Barnett, G.D. Dabelko, G.K. Hovelsrud, M. Levy, Ú. Oswald Spring, and C.H. Vogel, 2014: Human security. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 755-791.
  9. Oltmer, J. Global Migration in the Future. Focus Migr. 23, (2013).
  1. World Tourism Organization and United Nations Environment Programme. Climate Change and Tourism – Responding to Global Challenges. (2008).
  2. Amelung, B., Nicholls, S. & Viner, D. Implications of Global Climate Change for Tourism Flows and Seasonality. J. Travel Res. 45, 285–296 (2007).
  3. Rutty, M. & Scott, D. Will the Mediterranean Become ‘Too Hot’ for Tourism? A Reassessment. Tour. Hosp. Plan. Dev. 7, 267–281 (2010).
  4. Serquet, G. & Rebetez, M. Relationship between tourism demand in the Swiss Alps and hot summer air temperatures associated with climate change. Clim. Change 108, 291–300 (2011).
  5. OECD. Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management. (OECD Publishing, 2007).
  6. Rutty, M. et al. Using ski industry response to climatic variability to assess climate change risk: An analogue study in Eastern Canada. Tour. Manag. 58, 196–204 (2017).
  7. Gilaberte-Búrdalo, M., López-Martín, F., Pino-Otín, M. R. & López-Moreno, J. I. Impacts of climate change on ski industry. Environ. Sci. Policy 44, 51–61 (2014).
  8. Landauer, M., Pröbstl, U. & Haider, W. Managing cross-country skiing destinations under the conditions of climate change – Scenarios for destinations in Austria and Finland. Tour. Manag. 33, 741–751 (2012).
  9. Abegg, B. Klimaänderung und Tourismus: Klimafolgenforschung am beispiel des Wintertourismus in den Schweizer Alpen. (1996).
  10. Pütz, M. et al. Winter Tourism, Climate Change, and Snowmaking in the Swiss Alps: Tourists’ Attitudes and Regional Economic Impacts. Mt. Res. Dev. 31, 357–362 (2011).
  11. Arent, D.J., R.S.J. Tol, E. Faust, J.P. Hella, S. Kumar, K.M. Strzepek, F.L. Tóth, and D. Yan, 2014: Key economic sectors and services. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 659-708.
  12. UNWTO. Tourism Towards 2030. Global Overview. (World Tourism Organization, 2011).
  13. Berrittella, M., Bigano, A., Roson, R. & Tol, R. S. J. A general equilibrium analysis of climate change impacts on tourism. Tour. Manag. 27, 913–924 (2006).
  14. J Nicholls, R. et al. Sea-level rise and its possible impacts given a ‘beyond 4 degrees C world’ in the twenty-first century. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 369, (2011).
  1. Kovats , R.S., R. Valentini, L.M. Bouwer, E. Georgopoulou, D. Jacob, E. Martin, M. Rounsevell, and J.-F. Soussana, 2014: Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1267-1326.
  2. Summary of Conclusions. in The Economics of Climate Change: The Stern Review (ed. Stern, N.) xv–xx (Cambridge University Press, 2007). doi:DOI: 10.1017/CBO9780511817434.003
  3. Buchner, B., Falconer, A., Hervé-Mignucci, M. & Trabacchi, C. The Landscape of Climate Finance 2012. (2012).
  4. Stern, N. The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models. J. Econ. Lit. 51, 838–859 (2013).
  5. Howard, P. H. & Sterner, T. Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates. Environ. Resour. Econ. 68, 197–225 (2017).
  6. Nordhaus, W. D. & Moffat, A. A Survey of Global Impacts of Climate Change: Replication, Survey Methods, and a Statistical Analysis. Natl. Bur. Econ. Res. Work. Pap. Ser. No. 23646, (2017).
  7. Tol, R. S. J. THE IMPACTS OF CLIMATE CHANGE ACCORDING TO THE IPCC. Clim. Chang. Econ. 7, 1640004 (2016).
  8. Harris, J. M., Roach, B. & Codur, A.-M. The Economics of Global Climate Change. (Global Development and Environment Institute. Tufts University, 2017).
  9. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. 105, 1786–1793 (2008).
  10. DARA. Climate Vulnerability Monitor 2nd Edition. A Guide to the Cold Calculus of a Hot Planet. (Fundación DARA Internacional, 2012).

Weiterführende Informationsmöglichkeiten rund um den Klimawandel

Im folgenden haben wir Ihnen eine Auswahl weiterer interessanter Websiten etc. zusammengestellt, auf denen Sie zu spezifischen Themengebieten weitere Informationsmöglichkeiten finden.

meereisportal.de ist eine Initiative des Helmholtz-Verbundes „Regionale Klimaänderungen“ (REKLIM), des Alfred-Wegener-Instituts, Helmholtz Zentrum für Polar- und Meeresforschung, in Kooperation mit der Universität Bremen (Institut für Umweltphysik) mit dem Ziel, alle wichtigen und aktuellen Informationen rund um das Thema Meereis zusammenzubringen und für die Öffentlichkeit verfügbar zu machen. Das Portal bietet hierfür umfangreiche Hintergrundinformationen, aufbereitetes Datenmaterial, sowie den direkten Zugriff auf die Datenbasis.

zum Abbildungsverzeichnis
close-link